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1st 1
Introduction

The dwarf sees farther than the giant,
when he has the giant’s shoulder to mount on.

Samuel Taylor Coleridge
(1828)

The citation above has been used to express that we can learn more about the truth
by building on previous discoveries. Building on discoveries and evaluating the worth of
previous discoveries is what this dissertation is about. Two manners to include previous
discoveries in statistical analyses are informative priors and informative hypotheses,
which will be shortly explained in section 1.1 and 1.2 respectively.

1.1 Informative Priors

Informative priors can be used within Bayesian statistics. Bayesian statistics are named
after reverend Thomas Bayes (1701-1761) and were further developed by Pierre-Simon
Laplace (1749-1829). In Bayesian statistics, the probability of hypotheses or estimates
in parameter vectors are based on: (1) prior knowledge, and (2) the current data. If
we denote de hypothesis by H and the data by D, then Bayes’ theorem is given by:

P (H|D) = P (H)P (D|H)
P (D) , (1.1)

where P (H|D) is the probability of the hypothesis given the data, P (H) is the
probability of the hypothesis (i.e., the prior), P (D|H) is the likelihood of the data
given the hypothesis, and P (D) is the probability of the data. In case of parameter
estimation, H is replaced by the parameter vector θ.

Nowadays, we can apply Bayesian statistics on complex models with many pa-
rameters such as means, variances, correlations, and regression parameters. The prior
distribution represents the prior information that we have, irrespective of the data at

This chapter is written by Mariëlle Zondervan-Zwijnenburg
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hand, about the hypothesis of interest or about the parameters in the model. Where
do we get this prior information? To determine the content of the prior, we can make
use of previous discoveries presented in earlier research (e.g., Gelman et al., 2013,
Chapter 5), or knowledge that we elicit from experts (e.g., O’Hagan et al., 2006).

Consider the following hypothetical example in which we want to estimate the mean
of IQ in the Netherlands: µIQ. From previous research conducted in various European
countries, we know that the average IQ is 100. To make use of this knowledge, we can
compose a prior distribution. As a prior, we specify a normal distribution with a mean
of 100 and some standard deviation, for example, 10. That is:

µIQ ∼ N(100, 10). (1.2)

This prior expresses that the expected value for µIQ is 100, but we are not completely
sure that 100 will be the exact mean in our current population, therefore, we set the
standard deviation at 10 instead of a value close to 0. If we would have more doubt
about µIQ being (close to) 100, we would increase the standard deviation of the prior
for µIQ. A visualization of the prior distribution in Equation 1.2 is provided in Figure
1.1. Chapter 3 and 4 respectively demonstrate how prior knowledge can be obtained
from previous research and experts, and subsequently used in a Bayesian analysis.
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Fig. 1.1: Normal prior distribution for µIQ with prior mean = 100 and prior standard
deviation = 10.

How can we evaluate whether a prior specification is appropriate? In Chapter 2,
the impact of the prior distribution is evaluated in a simulation study. In Chapter
3, multiple analyses with varying priors are conducted to evaluate the impact of the
prior distribution. In Chapter 4, the prior distribution, the likelihood of the data, and
the posterior solution are visualized to clarify the impact of the prior distribution. In
Chapter 5, 6 and 7, the prior distribution is based on a study for which a replication
effort has been made. The prior predictive check Box (1980) is used here to evaluate
whether the new study fails to replicate relevant features of the original study. Those
features are captured in an informative hypothesis, which is the topic of the next
section.
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1.2 Informative Hypotheses

Another way to incorporate prior knowledge are informative hypotheses (Silvapulle and
Sen, 2005; Hoijtink, 2012). Typically, researchers evaluate a classical null hypothesis
H0 which captures the situation that “nothing is going on”, for example, H0: µ1 =
0, µ2 = 0, or H0 : µ1 = µ2. In contrast, informative hypotheses Hi express researchers’
expectations about the parameters. These expectations can be expressed through range
constraints, order constraints, and equality constraints. Consider again a hypothetical
example in which we evaluate the mean IQ of pupils in regular education µIQ-r and
special education µIQ-s. With range constraints we imply that the parameters cannot
take on any value, but only values within a certain range, that is:

Hi : 85 < µIQ-r < 115, 60 < µIQ-s < 90.

With an order constraint, we order the parameters in the model, that is:

Hi : µIQ-r > µIQ-s.

With an equality constraint, we can specify equality between parameters, or constrain
the value of parameters, that is:

Hi : µIQ-r = µIQ-s, or Hi : µIQ-r = 100, µIQ-s = 75.

For informative hypotheses it also holds that their content can be based on previous
discoveries presented in earlier research or knowledge held by experts. In Chapter 5,
6, and 7 the conclusions of an earlier study determine the content of the informative
hypothesis. In Chapter 8, informative hypotheses are based on exploratory discoveries
from multiple cohort studies.

To test an informative hypothesis, we can compute (1) a frequentist p-value (see
Silvapulle and Sen, 2005), (2) an information criterion comparing different informative
hypotheses (see Kuiper and Hoijtink, 2013), or (3) a Bayes factor comparing different
hypotheses (see Gu et al., 2018). In Chapters 5, 6 and 7, the informative hypothesis
leads to test statistics for which we calculate a prior predictive p-value (Box, 1980). In
Chapter 8, we use the Bayes factor to evaluate the relative amount of evidence for
competing informative hypotheses.

1.3 Aim and Outline

The aim of this dissertation is to demonstrate how prior knowledge can be formalized
and evaluated. Part I concentrates on acquiring prior knowledge for Bayesian analyses.
Part II introduces testing replication by means of the prior predictive p-value, and in
Part III, exploratory analyses lead to informative hypotheses that are evaluated with
Bayes factors. The dissertation ends with a Discussion chapter in which I highlight the
contribution of the different chapters, and discuss what future research may aim for.
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Acquiring Prior Knowledge
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Pushing the Limits: The performance of ML and
Bayesian estimation with small and unbalanced

samples in a latent growth model

Summary. Longitudinal developmental research is often focused on patterns of change or
growth across different (sub)groups of individuals. Particular to some research contexts,
developmental inquiries may involve one or more (sub)groups that are small in nature and
therefore difficult to properly capture through statistical analysis. The current study explores
the lower-bound limits of subsample sizes in a multiple group latent growth modeling by
means of a simulation study. We particularly focus on how the maximum likelihood (ML) and
Bayesian estimation approaches differ when (sub)sample sizes are small. The results show
that Bayesian estimation resolves computational issues that occur with ML estimation, and
that the addition of prior information can be the key to detect a difference between groups
when sample and effect sizes are expected to be limited. The acquisition of prior information
with respect to the smaller group is especially influential in this context.

Many researchers in the social and behavioral sciences use latent growth modeling
(LGM) to study development of individuals over time (e.g., Little, 2013). Within
LGM it is also possible to compare growth and the impact of variables on growth
between different groups of individuals, for example, between a focal (i.e., small) group
and a reference group. Researchers with this objective, however, often encounter two
difficulties. In particular, the comparisons they want to make are between groups: (1)
that have relatively different sample sizes, or (2) of which at least one is considered to
be very small according to common guidelines for implementing the statistical model.

This chapter is published as Zondervan-Zwijnenburg, M.A.J., Depaoli, S., Peeters, M.,
& Van de Schoot, R. (2018). Pushing the Limits: The performance of ML and Bayesian
estimation with small and unbalanced samples in a latent growth model. Methodology, 15,
31-43. doi: 10.1027/1614-2241/a000162.
Author contributions: MZ and RS designed the study. MZ, RS, and SD contributed to
the design of the simulation study. MP collected the data. MZ wrote the paper under
supervision of RS. Additional feedback was provided by SD and MP.

https://dx.doi.org/10.1027/1614-2241/a000162
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From the literature, we know that with traditional maximum likelihood (ML)
estimation, the consequences of small sample sizes can include: biased point estimates
(Boomsma and Hoogland, 2001; Depaoli, 2013; Lee and Song, 2004; Lüdtke et al.,
2011; Meuleman and Billiet, 2009; Van de Schoot et al., 2015), inadmissible estimates
(Boomsma and Hoogland, 2001; Can et al., 2015; Hox and Maas, 2001; Meuleman
and Billiet, 2009; Tolvanen, 2000), convergence issues (Boomsma and Hoogland, 2001;
Hochweber and Hartig, 2017; Hox et al., 2014; Lüdtke et al., 2011), and inflated Type-I
error rates (Boomsma and Hoogland, 2001; Hox and Maas, 2001; Hox et al., 2014; Lee
and Song, 2004; Meuleman and Billiet, 2009).

There is, however, little known about the consequences of unbalanced samples
(i.e., where sample sizes vary drastically across the subgroups being examined, e.g., 10
participants in the focal group vs. 500 in the reference group), especially when latent
growth models are being implemented. We only know that unbalanced samples in
LGM often result in low statistical power (Muthén and Curran, 1997), but its specific
effect on coverage, biased point estimates, and estimation problems has not been
thoroughly examined in the literature. Altogether, these issues may deter researchers
from comparing the development of focal and reference groups in latent growth models.

Bayesian estimation is an alternative estimation method gaining in popularity
(Kruschke, 2011; Van de Schoot et al., 2017). In Bayesian statistics, prior information
is combined with the data in the analysis, resulting in a posterior distribution. The
posterior distribution reflects probable parameter values given the prior information
and the data. From the posterior distribution, a measure of central tendency (i.e.,
the mean, median, or mode) is usually taken as a point estimate for the parameter
of interest. Additionally, a 95% (credible) interval can be derived from the posterior
distribution containing the most probable values for the parameter given the data.
The frequentist 95% confidence interval, in contrast, will contain the true population
value in 95% of the intervals over a long run of trials. To readers interested in a gentle
introduction into Bayesian statistics for social scientists, we recommend Kruschke
(2014), and Van de Schoot et al. (2013).

In the current paper, we conduct a simulation study to evaluate the performance
of maximum likelihood estimation and Bayesian estimation for latent growth models
with small and unbalanced samples. The goal of the simulation is to highlight best
practice when dealing with subgroup sizes that are quite different from one another.

2.1 Background on Sample Size Limits in LGM with ML and
Bayesian Estimation

Muthén and Curran (1997) investigated the effect of unbalanced sample sizes in
experimental designs on statistical power in LGM with sample size ratios varying
from 1:1 (balanced) to 1:10. In general, Muthén and Curran (1997) found that the
more extreme the sample size ratios were, the lower the statistical power to detect a
difference between groups with ML estimation. When the ratio was more extreme than
1:5, even samples with 1,000 participants in total showed less than desirable power
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(<.80) to detect a small effect (Cohen’s d = .20). Due to their focus on experimental
designs, Muthén and Curran (1997) do not cover very small sample sizes, extreme
sample size ratios, or the inclusion of covariates to limit the impact of confounders. No
literature was found that covered aspects other than power under unbalanced sample
sizes in LGM.

With respect to estimation in relation to total sample size for one group, estimates
from ML estimation with a sample size as low as 50 do not substantially deviate from
the population value (i.e., relatively unbiased) for means and factor loadings in LGM
and related multilevel models (Hox and Maas, 2001; Maas and Hox, 2005; McNeish,
2016a,b; Meuleman and Billiet, 2009; Tolvanen, 2000). Statistical power, however,
is generally insufficient with samples smaller than 100 for the types of effect sizes
commonly seen in empirical studies, and convergence issues also arise (Boomsma and
Hoogland, 2001; Hochweber and Hartig, 2017; Hox and Maas, 2001; Lüdtke et al.,
2011; Maas and Hox, 2005; Meuleman and Billiet, 2009; Tolvanen, 2000). Bayesian
estimation does not have the same issues with small samples as ML estimation for
two reasons. First, in Bayesian estimation, the results are determined by more than
the data: prior information is also included by means of prior distributions. Prior
distributions can be based on information that a researcher has about parameters in the
model a priori. When no information is available, so-called uninformative distributions
can be adopted, which typically specify a very wide range of values for the parameter
as probable. The more prior mass surrounding the population value, the better the
model estimate will represent this value. Consequently, the non-null detection rate
is higher, and inference errors are less likely to occur (Lee and Song, 2004; Depaoli,
2013; Van de Schoot et al., 2015).

The second reason Bayesian estimation does not have the same issues with small
samples is that Bayesian estimation does not rely on asymptotic assumptions about
sampling distributions akin to ML estimation (Asparouhov and Muthén, 2010). Depaoli
(2013) shows in a growth mixture model that the use of uninformative priors as
compared to ML estimation results in fewer problematically biased parameter estimates
(i.e., bias ≥ 10%). When Bayesian estimation is used with an uninformative prior, a
sample size of 20 already results in accurate estimates in a multilevel model (Hox et al.,
2012). In addition, the coverage of the population value was better with Bayesian
estimation, a result confirmed by Van de Schoot et al. (2015) for repeated-measures
analyses.

2.1.1 The Current Investigation

In order to ensure conditions were applicable to real data situations, the simulation
study is inspired by an empirical dataset on the development rate of working memory
in young heavy cannabis users versus their non-using peers. The data originate from

Statistical power is a frequentist term that involves the null hypothesis. Since the null
hypothesis does not exist in Bayesian statistics, we refer to the non-null detection rate
instead.
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268 young adolescents enrolled in special education due to behavioral problems (Peeters
et al., 2014). To improve on the notion of causality, the development of both groups
was corrected (by means of a time-invariant covariate) for the impact of quantity and
frequency of alcohol use at the start of the study, as recommended by Jacobus et al.
(2009). We set up the simulation this way in order to compare and establish sample
size requirements to evaluate a small difference in development between groups for
ML and Bayesian estimation when one of the groups has a sample size below 50.

By means of the simulation, we compare the sample size requirements to evaluate
a small difference in development between groups for ML and Bayesian estimation.
Regarding Bayesian estimation, the balance between sample size requirements and
the required specificity of prior information is investigated as well. Additionally, we
explore how the results are affected when a substantial amount of prior information
can be found for the reference group but not for the focal group. It can be expected
that prior information with respect to a focal group is harder to obtain.

2.2 Method

To compare the performance of ML estimation and Bayesian estimation in the evalua-
tion of small and unbalanced samples in a latent growth model, we conducted a Monte
Carlo simulation study in Mplus version 7.11 (Muthén and Muthén, 2012) directed by
the R-package MplusAutomation (Hallquist, 2013) in R 3.0.1 (R Core Team, 2013).
To promote transparency and replicability, analyses syntax files and all input and
output is available at osf.io/gjzu8. In this section, we elaborate on the model of
interest, the main characteristics of the simulation study, and the evaluation criteria.

2.2.1 The Latent Growth Model

Figure 2.1 displays the latent growth model as applied in this study. The model has four
observed variables (yg1 − y

g
4) representing repeated measures of the same construct. In

the empirical data, this construct is performance on a working memory task expressed
in percentages. The repeated measures are the indicators for the intercept, linear slope,
and quadratic slope latent variables. The linear growth factor in this model represents
the growth rate at one time point (typically the first time point). The model has one
covariate representing an observed time-invariant predictor, which is a measure of
alcohol use quantity and frequency at the start of the study in the empirical data. As a
result, the latent time variables technically have intercepts instead of means. However,
to avoid confusion between the intercept growth factor and the intercepts of the latent
growth factors, the latter will be referred to as being “means” throughout the paper.

In order to assess the growth rate difference between groups, a new parameter
(denoted by ∆α) was constructed by subtracting the linear slope mean of group 2 (i.e.,
the focal group) from that of group 1 (i.e., the reference group).

osf.io/gjzu8
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g = 1

g = 2

1 1 1
1 0

1 2
3 0

1 4 9

Fig. 2.1: Multiple group latent growth model with one covariate and groups indicated by g. yg
1 ,

yg
2 , y

g
3 , y

g
4 represent four assessments of a developing construct with residual error variances. xg

is a time-invariant predictor of growth that represents the latent variable Covariateg without
measurement error. The regressions of the latent growth factors Interceptg, Lin. slopeg, and
Quad. slope on the Covariateg are equal over groups.

2.3 Simulation Study Design

The population parameters originated from multiple group latent growth analyses
(see osf.io/ttybt) on empirical data. The difference between the linear slope factors,
∆α, was set at 1.60, while the disturbance of the linear slope factors was 64.00 in
order to represent a small effect size ( 1.60√

64.00 = .20 Cohen’s d; (Cohen, 1988)), which
is considered a realistic effect size for this parameter (see, for instance, Jacobus et al.,
2009).

For this population, we varied the sample sizes in the reference group, the sample
sizes in the focal group, and the estimation settings. The sample sizes for the reference
group were ∈ {50, 100, 200, 500, 1, 000, 2.000, 5.000, 10.000}, which represents a wide
range of sample sizes commonly specified in the empirical and methodological literature.
The sample sizes for the focal group were 5, 10, 25, and 50. Consequently, the sample
size ratios ranged from 1:1 to 1:2,000. The estimation methods were ML estimation
and Bayesian estimation.

ML estimation was applied with standard errors robust to non-normality and
non-independence of observations (MLR), which suits analyses with repeated measures.
Mplus uses accelerated expectation maximization (EMA) to obtain the ML estimates
(Muthén and Muthén, 2012). Syntax for the analyses is provided at osf.io/gjzu8.
The ML output shows one extra parameter compared to the exact same Bayesian
specification. This “knownclass” parameter, however, is not estimated. Therefore, we
consider the models to be exactly equal.

osf.io/ttybt
osf.io/gjzu8
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Bayesian estimation was implemented with seven different prior distribution set-
tings for the means of the latent growth factors. Normally distributed informative
priors were specified for the latent growth factor means, because it was considered
most likely that researchers would have knowledge about these parameters before
analyzing their data. Theoretically, however, prior information can be found for all
parameters. The more appropriate the information being included in the prior is,
the more accurate the parameter estimates will be. All user-specified priors were
normally distributed with mean µ0 and variance σ2

0 . The population values of the
growth factor means were used as prior means to understand the upper-bound perfor-
mance of Bayesian methods under these modeling circumstances. The prior variances
σ2

0 ranged from 0.1 (i.e., very informative) to 1010 (i.e., uninformative). Specifically,
σ2

0 ∈ {0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 1010}. Default priors were used for the other parameters
in the model. Specifically:

• A normal distribution with a mean of 0 and variance of 1010 for the mean of the
covariate and the regression coefficients,

• An improper inverse gamma with the shape parameter set at -1, and the scale at 0
for the variance of the covariate and the residuals of the observed variables,

• An improper inverse Wishart with 0 forming the scale matrix, and -4 degrees of
freedom for the covariances and residual variances of the growth factors.

Furthermore, 22 Markov chains were used for the Bayesian analyses to capture
the impact of many different starting values. Note, however, that 22 chains may be
excessive in other modeling contexts due to the length of time it would take to obtain
convergence. We were able to have the large number due to the computational capacity
that was available to us. It is important to note that methods and results described
here using these 22 chains are generalizable to situations requiring fewer chains. In
order to assess convergence, it is recommended that at least two chains are used
(Gelman and Rubin, 1992). The minimum number of iterations was set at 5,000, and
the maximum at 100,000. The first half of the chain was discarded as burn-in, and the
second half was used to construct the posterior (Muthén and Muthén, 2012).

Convergence was imposed by means of the Gelman-Rubin potential scale reduction
factor (PSRF; Gelman and Rubin, 1992). When the PSR was less than 0.05 points
away from 1 for all parameters in the second half of the iterations, the model was
considered to be converged. Subsequently, the first half of the iterations was discarded
as a burn-in phase (Muthén and Muthén, 2012). Syntax for the analyses is provided
at osf.io/gjzu8. Altogether, the number of cells in the simulation study was 4 (focal
group sample sizes) × 8 (reference group sample sizes) × 8 (estimation settings: 1 ×
ML + 7 × Bayes with varying σ2

0) = 256.
The simulation was extended with additional Bayesian analyses to investigate

what would happen if a substantial amount of prior information (specified as having a
variance hyperparameter of σ2

0 = 0.1, indicating a great deal of precision in the prior)

That is, 73.05, 71.54, 8.13, 6.53, and -2.16 for Interceptnon-users, Interceptusers, Lin.
slopenon-users, Lin. slopeusers, and Quad. slope, respectively

osf.io/gjzu8
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could only be obtained for the reference group, but not for the focal group (with a
variance hyperparameter of σ2

0 = 10.0, indicating less precision in the normal prior).
In the focal group σ2

0 was set at 10.0 instead of 1010 (the Mplus default) because,
even when prior information is hard to find, researchers and experts are generally able
to estimate its value to some extent. We investigated the effects of these conditions
for the largest (i.e., best performing) focal group (n = 50). The sample size of the
reference group was again manipulated for this additional condition examined. Input
for this analysis is located at osf.io/xm3v5

2.4 Evaluation

Since the main interest in multiple group LGM is to compare development between
groups, the growth rate difference parameter ∆α was the parameter of interest in the
simulation study. For the Bayesian cells in the design, the median of the posterior
distribution was interpreted as the point estimate. Credible intervals were obtained
by the equal tail method, having tails on both sides that each contain 2.5% of the
posterior distribution (Muthén and Muthén, 2012).

The difference parameter ∆α was evaluated in terms of proportion of bias, coverage,
statistical power or non-null detection rates, and estimation problems. The proportional
bias was calculated by dividing the average bias over the analyzed datasets by the
value of the population estimate. A proportional bias lower than .10 was considered
acceptable (Muthén and Muthén, 2002). Coverage is the rate of 95% confidence
intervals (frequentist statistics, e.g., ML estimation) or credible intervals (Bayesian
statistics) that covers the population parameter estimate. For a 95% confidence or
credible interval, coverage should be around the advocated 95%. In the current study,
a minimum level of .90 was considered acceptable. Statistical power and non-null
detection rates were calculated as the percentage of replications in which the 95%
interval for ∆α did not include zero. The acceptable minimum level of statistical
power or the non-null detection rate was considered to be .80 (Muthén and Muthén,
2002). The last criterion concerned estimation problems. Estimation problems arise
when the following occur: (1) negative variances, (2) correlations larger than one, (3)
linear dependencies among more than two latent variables are estimated, or (4) when
the model does not converge. When using ML estimation, Mplus notifies the user
when one of these problems occurred. The proportion of datasets for which Mplus
produced warnings in this respect was used as an evaluation of estimation problems.
Bayesian estimation cannot result in illegitimate estimates with the prior distributions
used in this study. Non-convergence, however, can occur, and can be detected by
warnings and/or by visual inspection of the trace plots. Therefore, for every cell in
the simulation design, two sets of trace plots were randomly selected and inspected
for convergence.

osf.io/xm3v5
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2.5 Results

2.5.1 Maximum Likelihood Estimation

Figure 2.2 shows the ML results in terms of proportion of warnings, coverage, statistical
power, and proportional bias for the four focal group sample sizes separately. As can
be seen, the proportion of bias was adequate for all combinations of sample sizes,
except for a focal group sample size of 5 combined with a reference sample of 100
(Figure 2.2a). Coverage was in general lower than .95, but always sufficient when the
focal sample contained at least 25 participants (Figure 2.2c, 2.2d). With sample sizes
in the focal group of 5 and 10, reference group sample sizes at both extreme ends did
not cover the population value often enough in the 95% confidence intervals (coverage
< .90), even though the average relative bias over datasets was acceptable (Figure
2.2a, 2.2b). Truly worrisome, however, were the statistical power and the proportion of
warnings. Even with 10,000 participants in the reference group, the power to detect a
small effect was lower than .50 for all focal groups, while a minimum of .80 is pursued.
The proportion of warnings with a reference group sample size of 50 ranged from .73
to .88. These warnings concerned illegitimate estimates, which make the results of
the analysis unreliable. Examples of warnings that were obtained for ML models with
estimation issues were as follows:

THE MODEL ESTIMATION TERMINATED NORMALLY

WARNING: THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE.
THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED
VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED
VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES.
CHECK THE RESULTS SECTION FOR MORE INFORMATION.

WARNING: THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT POSITIVE
DEFINITE. THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR A
LATENT VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO LATENT
VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO LATENT VARIABLES.
CHECK THE TECH4 OUTPUT FOR MORE INFORMATION.

2.5.2 Bayesian Estimation

With Bayesian estimation, bias and coverage were acceptable for every cell of the
simulation design. Plots for all cells can be found at osf.io/s59cz. In addition,
Bayesian estimation showed decent convergence. As a result, the remaining aspect of
interest was statistical power. Figure 2.3 shows for all four focal group sample sizes
(i.e., n = 5, 10, 25, and 50) how many participants are in the reference group and
how much prior information is necessary to obtain satisfactory non-null detection
rates. With uninformative priors imposed on all parameters (i.e., σ2

0 = 1010), non-null
detection rates were insufficient, regardless of the sample size in the reference group.
The same held when the variances of the priors for the latent growth factor means

osf.io/s59cz
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Fig. 2.2: Results for ML estimation by focal group sample size. On the x-axis, the size of
the reference group increases. From top to bottom, the static horizontal lines represent: (1)
the minimum acceptable value for coverage (i.e., .90), (2) the minimum acceptable value for
statistical power (i.e., .80), and (3) the maximum acceptable value for proportional bias (i.e.,
.10).

were decreased to 5.0. An exploration of the non-null detection rate with a focal group
of 100 and the prior variance of the latent growth factor means at 5.0 showed an
improvement in the non-null detection rate, but still about 10,000 participants in the
reference group were needed to acquire a non-nul detection rate close to .80. Prior
variances as specific as 0.1, on the other hand, resulted in a non-null detection rate of
1.0 for every cell.

2.5.3 Unbalanced Prior Information

The simulation results presented in the previous section show that an focal group of 50
participants combined with a prior variance is 0.1 can lead to an optimal situation in all
respects assessed (Figure 2.3). Figure 2.4 shows that when prior information is scarce
for the focal group (σ2

0 = 10), power is an issue again. Additional analyses showed
that no matter how much the prior variance in the reference group was decreased, a
satisfactory non-null detection rate could not be achieved as long as the prior variance
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Fig. 2.3: Non-null detection rate for Bayesian estimation by focal group sample size. On the
x-axis, the size of the reference group increases. The y-axis represents the non-null detection
rate. The static horizontal line represents the minimum acceptable value for the non-null
detection rate (i.e., 0.80). The remaining lines reflect the results for varying σ2

0 .

in the focal group was 10. Due to these clear results, the effect of unbalanced prior
information was not further investigated for cells with focal groups smaller than 50.

2.6 Conclusion

The aim of the simulation study was to investigate lower-bound sample size issues in a
multigroup LGM context, especially when one group is much smaller than the others.
We set up the simulation in this way in order to compare and establish sample size
requirements to evaluate a small difference in development between groups for ML
and Bayesian estimation when one of the groups has a sample size not larger than 50.

The results showed that ML estimation has issues with statistical power when at
least one of the groups is not larger than 50. Moreover, with ML estimation, analyses
based on small sample datasets generally cannot be properly interpreted because of
nonpositive definite matrices that yield inadmissible estimates.
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Fig. 2.4: Results for Bayesian estimation with unbalanced prior information. σ2
0 for latent

growth factors in reference group = 0.1. σ2
0 for latent growth factors in focal group = 10.

focal group n = 50.

By adopting Bayesian estimation, the issue of non-interpretable output disappears
and consequently smaller samples can be analyzed. Bayesian inference with uninfor-
mative as well as minimally informative priors, however, has non-null detection rate
issues similar to ML estimation. Specifically, even comparison groups with 10,000 par-
ticipants do not yield satisfactory non-null detection rates for a small effect. To obtain
a satisfactory non-null detection rate in the context of limited small and unbalanced
sample sizes, Bayesian estimation is necessary in combination with the availability of
very specific prior information. This may seem trivial to those who are familiar with
the Bayesian concept, but the current simulation study provided additional insight
to the effect of prior information by showing the consequences of specific degrees of
informativeness.

Note, however, that our use of an empirical model with empirical population values
limits the direct applicability of the simulation results to other research situations.
The simulation results are only directly indicative for other researchers under specific
circumstances. The statistical model needs to be equal (e.g., a latent growth model
including a time-invariant covariate, a multiple group confirmatory factor model with
a covariate, or a multiple indicators multiple causes model with the groups as a
covariate), the expected effect size small, and the growth rate difference needs to
be comparable or proportional after taking the impact of the covariate into account.
When the growth rate is proportional, the impact of the prior variances is proportional
as well. If these circumstances do not hold, the presented simulation results are mainly
useful as inspiration for new simulation efforts.

As was shown by the simulation study with unbalanced prior information, highly
informative priors are particularly necessary for the focal group. To be able to specify
such informative priors, the available prior information must be very specific and
convincing. This, however, may be seldom feasible because of the exceptionality of the
group. In such a situation, we advise researchers to publish their updated estimates
and data nevertheless. Such a publication provides a future researcher on the topic
with more prior information, and over time, the amount of prior information can
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be sufficient to draw conclusions about the effect under study. Thus, when separate
analyses cannot obtain sufficient power to make inferences, cumulative efforts of
researchers can overcome the issue.

2.6.1 Cautionary Points Regarding Bayesian Estimation

To avoid misinterpretations of this study, we hereby provide a disclaimer. The goal
of Bayesian analyses with informative priors is to make optimal use of all available
information. Accordingly, the simulation study shows the relation between the amount
of prior information and results in terms of estimation and the non-null detection rate.
With this information, researchers can observe the relation between the specificity of
prior information and other factors such as estimation problems, bias, non-null detection
rate, and cover- age. This paper is not a demonstration of how prior distributions
should be manipulated to secure statistically significant results: This would not be an
ethical use of the information, and the exact results may vary between study variables
and models. As shown in Zondervan-Zwijnenburg et al. (2017a) , prior knowledge
has to be acquired systematically and specifications of prior distributions have to be
justified. Moreover, to promote transparency, we advise to demonstrate the impact of
other priors on the results by means of a sensitivity analysis (see also Depaoli and Van
de Schoot, 2017). We believe that the manipulation of priors to obtain a “desirable”
result would fall under unethical research practices.

Another cautionary note should be made on the use of default priors for variance
parameters with small samples. Variance and disturbance parameters were not the
focus of this study, but it has been shown, for example, by McNeish (2016a) and Van de
Schoot et al. (2015) that these estimates can be severely biased with uninformative
priors.

2.6.2 Final Recommendations

Based on these findings, we recommend researchers with focal groups with fewer than
200 participants to conduct a simulation study in order to evaluate the impact of the
small sample on estimation issues, bias, coverage, and non-null detection rate. When
maximum likelihood estimation cannot generate proper output under the circumstances
of interest, we suggest to obtain prior information. Zondervan-Zwijnenburg et al. (2017a)
provides guidelines on collecting and including prior information. If sufficiently precise
prior information can be acquired, the data can be analyzed. If the researcher is
not able to meet the requirements, simpler models (e.g., descriptive statistics, case
studies), waiting until more prior information and participants become available (e.g.,
by following Google Scholar Alerts, RSS feeds, and reapproaching schools in a new
academic year), or conducting the analysis to contribute to cumulative science without
making inferences, are alternative ways to deal with the data.
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Where do priors come from? Applying guidelines to

construct informative priors in small sample
research

Summary. This article demonstrates the usefulness of Bayesian estimation with small
samples. In Bayesian estimation, prior information can be included, which increases the
precision of the posterior distribution. The posterior distribution reflects likely parameter
values given the current state of knowledge. An issue that has received little attention, however,
is the acquisition of prior information. This study provides general guidelines to collect prior
knowledge and formalize it in prior distributions. Moreover, this study demonstrates with an
empirical application how prior knowledge can be acquired systematically. The article closes
with a discussion that also warns against the misuse of prior information.

Small samples occur regularly in social sciences for various reasons. Sometimes the
size of the population is extremely limited, for example in children with a rare disease
(Van der Lee et al., 2008), or juvenile females charged with murder (Roe-Sepowitz,
2009). The population can also be difficult to recruit and prone to drop-out, because
they are homeless, institutionalized, or playing truant (Mäkelä and Huhtanen, 2010;
McCabe et al., 2016; Peeters et al., 2014). Factors such as costs (Rocchetti et al., 2013)
and ethical constraints (Van der Lee et al., 2008) may also make efforts to obtain a
larger sample quite difficult (or impossible).

One of the consequences of small samples such as those described above is low
statistical power (i.e., inflated Type II error, see for example Muthén and Curran 1997
for a simulation study). Non-significant p-values, which likely follow from underpowered
analyses, cannot be meaningfully interpreted in the null hypothesis significance testing

This chapter is published as Zondervan-Zwijnenburg, M.A.J., Peeters, M., Depaoli, S., &
Van de Schoot, R. (2017). Where do priors come from? Applying guidelines to construct
informative priors in small sample research. Research in Human Development, 14 (4),
305-320. doi: 10.1080/15427609.2017.1370966
Author contributions: MZ and RS designed the study. MP collected the data. MZ wrote
the paper under supervision of RS. Additional feedback was provided by SD and MP.

https://dx.doi.org/10.1080/15427609.2017.1370966
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Fig. 3.1: Multiple group latent growth model with one covariate and groups indicated by g. yg
1 ,

yg
2 , y

g
3 , y

g
4 represent four assessments of a developing construct with residual error variances. xg

is a time-invariant predictor of growth that represents the latent variable Covariateg without
measurement error. The regressions of the latent growth factors Interceptg, Lin. slopeg, and
Quad. slope on the Covariateg are equal over groups.

(NHST) framework. Consequently, researchers often refrain from analyzing interesting
(i.e, exceptional) groups, and deviate from recommended cut-offs to cover larger groups
(e.g., Heron et al., 2013; Scharkow et al., 2014), or need to conclude that power was
too low to detect the foreseeable small effect (e.g., Mahu et al., 2015).

In Bayesian statistics, on the other hand, prior information is combined with the
data in the analysis resulting in a posterior distribution that, irrespective of sample size,
can be interpreted as a distribution displaying the probability of parameter values. Prior
distributions can incorporate information about model parameters that researchers
have before seeing the data. Sometimes, researchers lack information, but often they
are able to limit the admissible parameter space. For example, a prior distribution for a
mean could exclude values that are outside the range of the measurement scale. Such a
specification already increases the precision of the posterior distribution. Alternatively,
a researcher may be able to specify a normal prior distribution that favors some
values over others. When no prior information is available, an uninformative prior can
be adopted which typically specifies a wide range of parameter values as probable.
When a prior distribution becomes narrower, because more prior information becomes
available, the posterior distribution is affected increasingly by the prior information
and becomes narrower and more informative as well. One could state that statistical
power increases, and inference errors are less likely to occur (see Van de Schoot et al.

To readers interested in a gentle introduction into Bayesian statistics for social scientists,
we recommend Kruschke (2014), and Van de Schoot et al. (2013).
The term power originates from the frequentist setting, where only frequency probabilities
can be considered. A frequency probability refers to the expected relative frequency of an
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2017 for an overview of simulation results in the last 25 years). Furthermore, prior
distributions can avoid inadmissible estimates and convergence issues in Bayesian
estimation. Typical frequentist estimation methods like maximum likelihood (ML)
estimation have been shown to suffer from these problems by several simulation studies
(e.g., Boomsma and Hoogland, 2001; Hox and Maas, 2001; Meuleman and Billiet,
2009; Tolvanen, 2000). In sum, Bayesian estimation with informative priors results
in meaningful output, even with small samples, and can increase the precision of
the result when prior information is available. Note however, that even though prior
information will increase the precision of the estimates with small samples, we strongly
recommend collecting larger samples if this is possible in any way.

The advantages of Bayesian estimation with informative priors for small sample
research may be clear, but the current literature does not demonstrate how prior
information can be collected systematically, and how priors subsequently should be
specified with the obtained information. The current study addresses this gap in the
literature. First, we present guidelines to support researchers that are interested in
conducting a Bayesian analysis with informative priors. However, we do not only
present guidelines, we also report on our efforts to actually follow them in the context
of an empirical application concerning a latent growth model. For this application, we
search for prior information, and subsequently formalize the information into prior
distributions. The empirical application does not represent the “ideal” situation. On
the contrary, the application is a realistic study for which prior information is not
easily acquired. With this application, we show what a researcher can do to obtain
prior information in complex situations, and what there is left to do, when things do
not work out as hoped for. We expect that social scientists who happen to operate
under ideal circumstances can easily derive the appropriate steps to take from this
example as well. Finally, the paper provides a discussion on how priors should, and
should not be used.

3.1 Guidelines

The following general guidelines can support researchers interested in constructing
informative priors for parameters:

• Determine what strategy suits the project of interest best with questions like:
– Could prior information likely be found in the literature (e.g., meta-analyses,

reviews, empirical studies)? Note that the quantification of prior information is

outcome given repeated events. Power is the frequency probability of rejecting the null,
given that the alternative hypothesis is true. In the Bayesian setting, usually subjective
probabilities reflecting a degree of belief are considered, but a subjective probability can
be translated to a frequency probability (Press, 2009). For example, a probability of .5 of
getting heads from a coin flip can be translated to 5 expected heads in 10 tosses. Hence,
one can imagine that a construct like power can be used in the Bayesian context as well
(see also Rubin, 1984).
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more straightforward when the literature covers the same variables obtained
with the same measures as the data of interest.

– Are there experts on the subject matter, and who are they? How can experts
contribute? Would experts be able to specify priors for the parameters in the
model at hand, or can they contribute in a different manner?

– What general knowledge is available about the model parameters?
– Is it possible to increase the information in the data by increasing the sample

size?
• Determine how to gather the information systematically. Keep a log of every

decision (see, for example, the logbook provided at osf.io/aw8fy).
• When you intend to construct informative priors, visualize them. A visualiza-

tion (e.g., with R, or www.wolframalpha.com) quickly shows whether the prior
specifications that you consider are reasonable.

• When conducting a Bayesian analysis, always provide the following: (1) the origin
of and reason behind the priors, and (2) the exact specifications of the priors. See
Depaoli and Van de Schoot (2017) for further instructions on reporting Bayesian
analyses.

• Conduct a sensitivity analysis and show the impact of various priors on the posterior
estimates (Van de Schoot et al., 2017). Consider at least the derived informative
priors and default priors, but conservative or skeptical priors may be interesting to
examine as well.

• Try to understand and interpret differences between analyses with different priors.

3.2 Empirical Application

To demonstrate how prior information can be systematically collected and included
in a Bayesian analysis, we compared the development rate of cognitive performance
in young heavy cannabis users to that of their nonusing peers in a two-group latent
growth model (LGM). We did so in a high-risk sample of young adolescents enrolled
in special education because of behavioral problems (Peeters et al., 2014). Young was
defined as younger than 15, because cannabis use before age 15 is considered as early
onset (Jacobus et al., 2009). A relation between cannabis use and poorer attention,
learning, and processing speed is expected especially with early onset of use (Fontes
et al., 2011; Jacobus et al., 2009; Schweinsburg et al., 2008). By using a high-risk
sample, the heavy cannabis users and their nonusing peers are better comparable.
However, this also limits the total sample size. In addition, heavy cannabis using
adolescents were expected to be a minority even in this sample. Thus we have a small
and unbalanced samples, for which several simulation studies have demonstrated that
ML estimation results in low power, and computational issues (e.g., Hox and Maas,
2001; Meuleman and Billiet, 2009; Muthén and Curran, 1997).

In Bayesian estimation informative priors can increase the precision of the posterior
outcome, and even when the statistical power would be low, the posterior distribution
would still be meaningful and easy to interpret. From the posterior distribution, a

osf.io/aw8fy
www.wolframalpha.com
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measure of central tendency (e.g., the mean, median, or mode) is usually taken to
reflect a point estimate for the parameter of interest. Additionally, a 95% credibility
interval can be derived from the posterior distribution. This interval has a 95% chance
of containing the true parameter value, given the data and the prior. The frequentist
95% confidence interval, in contrast, cannot be interpreted as an interval that has a
95% chance of containing the true value. The confidence interval only contains the
true population value in 95% of the intervals over a long run of trials. Thus, the
Bayesian framework provides solutions that are more meaningful. Additionally, prior
distributions can prevent inadmissible solutions by assigning zero probability to ranges
of values that the parameter cannot take (e.g., negative values for variances). All
in all, we had various reasons to conduct a Bayesian analysis and search for prior
information.

3.2.1 Method

Participants

The original study of Peeters et al. (2014) concerned 374 adolescents (330 boys, 44
girls) who attended special education schools for youth with externalizing behavioral
problems in the Netherlands. From this group, adolescents younger than 15 at the
first assessment were selected to ensure that cannabis use at the first wave reflected
an early onset. Twenty-eight participants did not indicate their age in years at the
first wave. To avoid a loss of power, missing data for age was imputed by means of
the R-package mice (Van Buuren and Groothuis-Oudshoorn, 2011). Participants’ ages
could be easily imputed, because age in full years was assessed repeatedly in the two
years that assessments were taken. Exact birth dates, however, were not available. The
mean age over 10 imputations for each participant was computed. Participants with a
rounded mean age younger than 15 were selected for further analyses (n = 331).

Subsequently, we mimicked previous literature (Mahmood et al., 2010) in that
non-users and heavy users were selected to contrast the two extremes. Students were
selected based on their response to the question: “How often have you used cannabis
during the past 6 months?”. The five answer categories to this question were: (1) “I
have not used cannabis/marijuana", (2) “Once a month”, (3) “2-4 times a month”,
(4) “2-3 times a week”, and (5) “4 times a week or more”. Adolescents who selected
the first answer category “I have not used cannabis/marijuana” were identified as
non-users (n = 252, mean age = 13.30, 90.4% male). All adolescents who selected the
fourth and fifth answer category (n = 16, mean age = 13.38, 81.3% male) met the
requirements to be considered heavy cannabis users (Barnes et al., 2005). The 25 and
13 participants that selected category 2 and 3 respectively were not included, as well
as the 25 participants that chose not to answer this question.

Measures

Working memory. Working memory performance was selected as a measure of cognitive
performance because working memory continues to develop throughout adolescence



3rd

28 3 Where do priors come from?

(Best and Miller, 2010). Working memory performance was assessed with the non-
verbal self-ordered pointing task (SOPT) with representational drawings of everyday
objects (Petrides and Milner, 1982). In this task, participants were instructed to select
a different picture out of a set of pictures each time, while after each choice the
location of the pictures changed and they were not allowed to select the same location
consecutively. The task included one practice trial with a set of 4 unique pictures, and
four assessment trials with sets of 6, 8, 10, and 12 unique pictures. The percentage of
correct choices on the task was used as an indication of working memory performance.
Details of the assessment can be found in Peeters et al. (2014). In the current dataset,
working memory performance was assessed four times over two years with intervals of
approximately 6 months (Peeters et al., 2014).

Alcohol use. We corrected the development of both groups for the impact of quantity
and frequency of alcohol use at the start of the study, as recommended by Jacobus
et al. (2009). Alcohol use was assessed by means of a quantity frequency measure
(QF). The QF was a multiplication of the number of days a week that the adolescent
usually consumed alcohol with the number of glasses that were usually consumed on
drinking days. A detailed description can be found in Peeters et al. (2014).

Statistical Approach

To investigate the difference in cognitive development between heavy cannabis users
and non-users, the latent growth model as shown in Figure 3.1 was the preferred
analysis. The repeated measures (i.e., yg1 , y

g
2 , y

g
3 , and y

g
4) were represented by the four

assessments of SOPT scores, and the covariate for this model was a measure of alcohol
use quantity and frequency at the start of the study (i.e., xg). The quadratic slope
was included, because the linear increase in the percentage of correct responses on the
task was expected to level off over time. Because this effect was expected to be similar
for both groups, the quadratic slope was constrained equal over groups accordingly.
The linear growth factor in this model represents the linear growth rate at the first
time point while a quadratic factor is modeled. As indicated above, the model has one
covariate representing an observed time-invariant predictor. As a result the latent time
variables technically have intercepts instead of means. However, to avoid confusion
between the intercept growth factor and the intercepts of the latent growth factors,
the latter will be referred to as means throughout the article. To assess the growth
rate difference between groups, a new parameter (denoted by ∆α) was constructed by
subtracting the linear slope mean of the frequent users group (i.e., the exceptional
group) from that of the non-users group (i.e., the reference group).

3.2.2 Prior knowledge

Prior distributions need to be specified for all parameters in a Bayesian model, but
we focused on finding prior knowledge for our main parameters: ∆α, and the latent
growth means. For the remaining parameters, we used the default settings of Mplus
7.3, that is: N(0, 1010) for mean of the covariate and for the regression coefficients,
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IG(−1, 0) for the residual variances and the variance of the covariate, and IW (0,−4)
for the variance-covariance matrix of the growth factors (Muthén and Muthén, 2012).
Note that default settings can cause problematic results. See for instance Van de
Schoot et al. (2015). We report a sensitivity analysis with varying prior distributions
for the remaining parameters in our logbook, which is provided at osf.io/aw8fy.

Prior knowledge can be extracted from several resources such as meta analyses,
reviews, empirical studies, and experts (O’Hagan et al., 2006). We evaluated potential
sources of prior information one by one, and after consideration of each source, it was
re-evaluated what the next step would be.

Meta-Analyses

A literature search was conducted in Scopus for meta analyses published between
January 2000 and December 2013 based on the terms: cannabis, marijuana, ado-
lescent, and cognitive. The search yielded six results. However, none of them were
relevant because they concerned non-healthy subjects (i.e., suffering from psychosis,
or schizophrenia; n = 3), and interventions (n = 3), instead of the relation between
cannabis use and cognitive impairment (see osf.io/aw8fy for references). As a result,
the search for prior information had to be continued with respect to the next source:
Reviews.

Reviews

A search for reviews with the same keywords as for meta analyses yielded 33 English
matches. We had to exclude 27 of these studies, because they concerned preventions and
interventions (n = 11), schizophrenia and substance use disorders (n = 4), prenatal
exposure (n = 5), or did not focus on cognitive effects of cannabis use (n = 7).
Consequently, six reviews were considered relevant. Three additional relevant reviews
were identified through other resources. The resulting nine reviews were all published
in 2008 and 2009, and covered information from 36 articles, including human and
animal (preclinical) studies. By analyzing key sentences from the reviews, we learned
that a zero effect size for ∆α should receive more than zero probability from the priors
(see osf.io/aw8fy for references and details). Quantitative information about the
exact values of the intercept, linear, and quadratic slopes, however, lacked. To find
this information with which priors can be constructed, we decided to continue with a
search for actual SOPT scores in empirical articles.

Empirical Studies

Because it is not common to mention an assessment instrument in the title, abstract,
or keywords of an article, a search engine that evaluates the content of complete
articles had to be used. A suitable search engine for this purpose is Google Scholar.
In Google Scholar, we used the following search query: “self-ordered pointing", child
OR adolescent. The search yielded 693 hits. To obtain the most relevant results for

osf.io/aw8fy
osf.io/aw8fy
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our research population, several inclusion criteria were applied. First, actual scores of
the SOPT with familiar objects had to be provided in the study. Second, the mean
age of the samples studied had to be between 9.5 and 17.5 years old, this age range
covers the age of the research population ± 4 years. Third, the version of the SOPT
had to include concrete pictures, because other versions differ in difficulty, and thus in
their scores. Fourth, samples had to consider typically developing children, or children
with attention deficit/hyperactivity disorder (ADHD), oppositional defiant disorder
(ODD), and/or conduct disorder (CD). ADHD, ODD, and CD are disorders commonly
encountered in special education classes such as those included in the current study.
Fifth, studies had to cover samples that were not already covered in (1) previous
articles that met the inclusion criteria or (2) the current study.

After correspondence with authors about task and sample ambiguities, 13 out of
693 articles yielded useful information. All obtained SOPT scores were transformed
into a percentage of correct responses. An overview of the articles with encountered
SOPT scores for children and adolescents is given at osf.io/aw8fy. To ensure that
the obtained scores were relevant for our specific high-risk sample, we involved experts.

Experts

Two experts were recruited to participate in the current study: A developmental
psychopathology professor and a clinician at a secondary school for youth with
externalizing behavioral problems. In separate face-to-face meetings, the experts
received a questionnaire consisting of an explanatory text and a table. Based on
sample descriptions from the selected empirical studies, the experts rated the relevance
of these samples for the population of youth with behavioral problems in general, and
they estimated the percentage of cannabis users in the described sample. During the
procedure, the experts did not get information on the SOPT scores in the study, nor
did they get information about the authors of the study. The intraclass correlation
coefficient with respect to the absolute agreement of the two experts about study
representativeness was .87, indicating good interrater reliability.

The relevance of the samples rated by both experts was averaged. When the average
judgment of sample relevance was higher than .5, the sample relevance was multiplied
with the sample size, resulting in a number that was interpreted as the relevant sample
size. Based on the relevant sample sizes, a weighted average of the SOPT scores for
each age group was computed. Relevant samples with an estimated percentage of
cannabis users higher than 50% were considered relevant for the exceptional group.

Figure 3.2 shows the weighted averages by age and population. As can be seen,
only one sample qualified as representative for the exceptional population of heavy
cannabis-using youth with externalizing behavioral problems according to the experts.
Four samples were considered relevant for the reference group. However, these studies
all covered 10-year-olds, yielding only one datapoint from a longitudinal perspective.
To construct a prior for the intercept factor at age 13 and the linear slope factor, prior
information had to be obtained for at least two age groups. Because these were not
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Fig. 3.2: Weighted SOPT scores by age.

available for the population of interest, general knowledge needed to complement the
information that we had acquired so far.

General knowledge and prior specification

Intercept. The information on typically developing children indicated that around
age 13.5 values between 75 and 95 are most likely. Hence, the prior mean was set at
the mean of those values: 85. To determine the variance for this mean, prior mean
variances were visualized (see Figure 3.3a) and the preference of the distribution for
some values over others was calculated. With respect to the intercept factor, a variance
of 30 implied that values between 80 and 90 were 1.06 times as likely in the prior
distribution as values between 90 and 100 (or between 70 and 80), and 1.25 times
as likely as values between 100 and 110 (or between 60 and 70). These ratios in the
likelihood of values in the prior distribution were considered reasonable, and thus
implemented as such.

Linear Slope. To acquire an idea about the trend over time, a linear regression was
fitted to the SOPT scores for typically developing children. The result is represented by
the slope in Figure 3.2. The negative trend, however, is not in line with validated theory
(Best and Miller, 2010). In addition, the SOPT scores of typically developing children
seemed inconsistent over time. Based on theory, we expected a positive development
of SOPT scores over time (Best and Miller, 2010). This expectation was confirmed by
the empirical study of Clarke (2009), who found a significant positive cross-sectional
correlation of medium size between age and performance on the SOPT for children
with ADHD, who were at risk for CD. However, because the prior information derived
from the SOPT scores for typically developing children indicated a negative trend,
negative values were not excluded. More specifically, given an intercept prior mean of
85, the linear growth mean could be up to 1.75 points per 6 months to reach a score
of 95.5 at age 17. However, we expected that the growth rate decreased when higher
scores were achieved. Thus, a negative quadratic factor was anticipated, which allowed
for a higher linear growth factor. Given the expectation of a negative quadratic factor
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mean, the linear slope prior mean was set at 2.00 points per 6 months with a prior
variance of 7.5. This prior variances caused values between 0 and 4 to be 1.15 times as
likely in the prior distribution as values between 4 and 8 (or between 0 and -4). See
Figure 3.3b for a visualization.

Quadratic Slope. As mentioned, a diminishing growth rate over time can be
represented by a negative quadratic growth factor. In the current empirical application,
however, a large negative quadratic growth factor might cause a decrease in working
memory within the range of the model, whereas this is not expected during adolescence
(Best and Miller, 2010). Therefore, the prior mean for the quadratic growth factor
was set at -0.1 with a variance of 7.5. The variance of 7.5 is relatively wide for this
quadratic slope that we expect to be small. With this variance we reflect that we do
not have very specific information for the quadratic slope factor. This distribution has
the same shape as that in 3.3b, but is shifted 2.1 points to the left. The combination
of the specified priors for the latent growth factor means presupposed an increase of
5.1 in the percentage of correct SOPT entries over the two years in which data was
collected.

All in all, the final prior distributions were:

p(Interceptg) ∼ N(85.0, 30.0), (3.1)
p(Lin. slopeg) ∼ N(2.0, 7.5), (3.2)
p(Quad. slope) ∼ N(−0.1, 7.5). (3.3)

Note that we specified normal distributions in all cases, but that other distributional
forms (e.g., beta, Cauchy, skewed normal, etc.) can also be considered. Novice appliers
of Bayesian statistics might need to be aware of software limitations in this respect.
See Depaoli and Van de Schoot (2017) for detailed guidelines on specifying prior
distributions.

3.2.3 Results

A Bayesian analysis was conducted in Mplus 7.3 with four chains, a minimum of
50,000 iterations, and BCONVERGENCE was set at an extra strict number of
.005. BCONVERGENCE affects the pursued Gelman-Rubin potential scale reduction
(PSR) (Gelman and Rubin, 1992) criterion value for the model to be considered
converged (Muthén and Muthén, 2012). Convergence was obtained at 50.000 iterations.
Subsequently, the first half of the iterations was discarded as a burn-in phase. The
maximum PSR among the iterations that contributed to the posterior results (i.e.,
25.000-50.000) was 1.014. The median of the posterior distribution was interpreted as

No prior was assigned directly to ∆α, since this parameter is derived from the linear slope
means. To implement a difference between groups with a small effect size, as was indicated
by the reviews, information about the residual variance in the linear slope after prediction
by the amount of alcohol use was necessary. This information could not be derived from
any of the evaluated literature.
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Fig. 3.3: Visualizations of the prior distributions for the latent growth factor means.

the point estimate. Traceplots for all parameters showed that the chains had stable
means and variances. See osf.io/aw8fy for the data, syntax, and output.

The results of the analysis are provided in Table 3.1. The 95% (highest posterior
density) interval for ∆α = [0.17, 7.30] (see also Figure 3.4). The median of this
distribution is 3.77. Based on this distribution we can state that we are 98.0% sure
that ∆α > 0. Thus, young adolescents not using cannabis seem to have a higher
working memory increase than their heavy cannabis using peers. Cohen’s d at the
median of this distribution is 0.54.

To evaluate the impact of the informative priors on this result, a sensitivity analysis
was conducted, which is presented in detail at osf.io/aw8fy. The main results for the
analysis with default priors are presented in Table 3.1. The 95% credibility intervals for
all parameters in the analysis with informative priors were smaller than the analysis
with default priors, indicating that the prior information increased the precision of
the final results. The last column shows the relative difference in posterior medians
between both analyses. In absolute terms, the discrepancies ranged from 1.07% for
the non-users’ intercept to 51.53% for the heavy users’ linear slope mean. The relative
difference between the analyses for ∆α was 46.48%. In the analysis with default priors,
the 95% interval was ∆α = [−2.05, 7.28] with 2.57 as its median (Cohen’s d = .35).
86.4% of the posterior distribution for ∆α is larger than 0, and 68.4% is in line with
at least a small effect size (i.e., Cohen’s d ≥ .20). The posterior distributions for ∆α
obtained from the analysis with informative priors and the analysis with default priors
are depicted in Figure 3.4. The figure shows that relative to the posterior from the
analysis with informative priors, the posterior from the analysis with default priors is
wider and puts a higher probability on lower values for ∆α.
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Fig. 3.4: Samples from the posterior distributions for ∆α based on informative priors
(darkgrey) and default priors (transparant). Vertical lines indicate the limits of the associated
95% highest posterior density interval.

Table 3.1: Main posterior parameter estimates for the analysis with informative and
default priors.

Informative priors Default priors Difference

Parameter M 95% CI M 95% CI %
Interceptnon-users 74.00 [72.47, 75.55] 73.22 [71.58, 74.83] 1.07
Interceptusers 78.68 [73.06, 84.20] 75.16 [68.18, 82.30] 4.68
Lin. slopenon-users 6.10 [3.94, 8.26] 7.40 [4.95, 9.95] -17.68
Lin. slopeusers 2.34 [-1.28, 5.96] 4.83 [-0.35, 10.00] -51.53
Quad. slope -1.58 [-2.27,-0.92] -1.94 [-2.72,-1.18] 18.48
∆α 3.77 [0.17, 7.30] 2.57 [-2.05, 7.28] 46.48
Note. nnon-users = 252, nusers = 16. CI = credibility interval.

3.2.4 Conclusion Empirical Application

Despite the expected lack of statistical power, the analysis did show that young
adolescents not using cannabis most presumably have a stronger working memory
growth rate than their heavy cannabis-using peers. Note that we cannot draw causal
conclusions, because there may be more differences between the sample of heavy
cannabis users and non-users that relate to their working memory development rate
than cannabis alone, even after controlling for quantity and frequency of alcohol use
at the start of the study. Furthermore, the information from the data for both groups
was substantiated with more general prior information. This general information
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affected the posterior distribution for the heavy cannabis users more, because the
sample for this group was smaller and the data thus contained less information. The
sensitivity analysis showed that with default priors we would also conclude that we
expect that young adolescents not using cannabis most presumably have a stronger
working memory growth rate than their heavy cannabis using peers, but we are less
confident. Future studies can use our posterior results, either with informative or
default priors, as prior information again. By reporting the exact prior distributions
and how they came into being, everyone can review our prior information. By reporting
an analysis with uninformative priors as well, we provide a similar insight into data.

3.3 Discussion

The aim of the current study was to provide guidance on and to demonstrate how
prior information can be collected systematically and subsequently formalized, since
this information is lacking in current literature. In the pursuit of this aim, we pro-
vided guidelines and demonstrated their application with an empirical application. In
the following paragraphs we discuss advantages and disadvantages of different prior
information sources, we discuss directions for future research, we discuss the ethical
use of Bayes, and end with some concluding thoughts relating back to NHST.

When prior information is scarce, it seems promising to collaborate closely with
experts. In the current study, experts contributed to the evaluation of information
obtained from other studies. Another option is to let experts determine the prior for
the parameter of interest themselves. In that case, the researcher must ensure that the
experts understand the parameter of interest, use appropriate heuristics, and avoid
fallacies (see also O’Hagan et al., 2006). Under these conditions, collaborating with
experts can always increase the precision of the result, in contrast to searching for
literature, which may not result in useful prior information. Additionally, published
studies may suffer from publication bias. It is important to realize however, that
“academic” experts may be affected by this publication bias as well. Furthermore, a
procedure to elicit priors for the specific model parameter adjusted to the experts at
hand may be nonexistent. Developing a valid and reliable procedure to elicit prior
information may be a full research project in itself (see for example Johnson et al.,
2010b; Zondervan-Zwijnenburg et al., 2017b), whereas a search for prior information in
the literature may resemble an extended systematic literature study that researchers
would also conduct to write the introduction to their paper. Currently, experts in the
social sciences mainly contribute to clinical studies by estimating (success) probabilities
(Spiegelhalter et al., 2000). Empirical research on the elicitation of more complex
parameters within the social sciences is warranted (O’Hagan et al., 2006). As was
also apparent in the empirical application, prior information does not only affect
standard errors, it can also change estimates in case of a discrepancy between the
prior information and the data. In the analysis with informative priors, the posterior
results in the exceptional group were affected more by the prior distributions than the
posterior results of the reference group. The reference group posterior distributions
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were mainly affected by the data. Additional research is required with respect to the
inclusion of prior information. More specifically, the area of research about the inclusion
of highly informative prior distributions is still in its early stages. Researchers may
want to test whether a mismatch between the prior and data exists. Methods for such a
test need to be further developed to be applicable for applied researchers with all sorts
of models. Additionally, some of the reviews discussed in the empirical application
considered information from animal studies, but how well can this information serve
as prior information in social and behavioral sciences research, should it be merged
with prior information from studies on humans, and if so how?

3.3.1 (Un)ethical use of Bayesian estimation

Like frequentist NHST, Bayesian estimation methods can be misused. Misuse of
Bayesian estimation with informative priors would be to repeatedly conduct analyses
with varying priors and only report the analysis with “desirable” results. This is
unethical behavior, comparable to ‘p-hacking’ and data fabrication.

Instead, researchers should be transparant about the actions and reasoning that
led to the priors at hand. In the current study, for example, we conducted a systematic
search, we reported this search, and provided justifications for the final prior choices.
In this manner, readers can decide for themselves whether they are convinced by the
information.

A simulation study can clarify how specific prior information should be to obtain
posterior results that can convincingly exclude specific parameter values like zero. This
may be helpful in designing the search for prior information. However, if the results
show that zero will be a likely value a posteriori, researchers should be able to accept
this as a conclusion. In studies that are conducted properly, such results should be
regarded publication worthy. Irrespective of the results, any publication can provide
prior information for future studies on the same topic. In this manner, cumulative
science through Bayesian updating is promoted.

Additionally, to promote transparency we advise to demonstrate the impact of
other priors on the results by means of a sensitivity analysis (Van Erp et al., 2018). The
sensitivity analysis should be clearly documented as well (see, for example, the logbook
provided at osf.io/aw8fy). Clear reporting and sensitivity analyses contribute to
transparency, and thus integrity, that is recognized to be important for the survival of
social science research (Cumming, 2014). Depaoli and Van de Schoot (2017) developed
a 10-point checklist to improve transparency and replication in Bayesian research.

3.3.2 Concluding Thoughts

The issues with NHST have been widely discussed (e.g., Cumming, 2014; Cohen,
1994; Kline et al., 2004; Rozeboom, 1960), and the Bayesian framework offers a viable
alternative to this hypothesis testing framework, because it can prevent researchers
from having to make an over-simplified decision of whether a hypothesis is to be
rejected. Bayesian estimation is a beneficial tool that is less restrictive than the
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conventional NHST framework. It is our hope that this demonstration of how informed
priors can be acquired and implemented will aid in broadening the methods typically
used for assessing hypotheses in the conventional framework.

The current study showed how prior information can be obtained systematically,
and how this information can be formalized into prior distributions. Once again we
want to emphasize that specifying highly informative prior distributions is not to be
used in order to achieve statistically significant results. Instead, prior specifications
should be used because including available information can be the key to answering
questions about populations that otherwise remain unanswered. The search for prior
information may be intensive and time consuming, yet it can be rewarding because it
provides great insight in the current state of the field, it can improve the analysis, and
it results in an update of knowledge.
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4
Application and Evaluation of an Expert Judgment

Elicitation Procedure for Correlations

Summary. The purpose of the current study was to apply and evaluate a procedure to
elicit expert judgments about correlations, and to update this information with empirical
data. The result is a face-to-face group elicitation procedure with as its central element a
trial roulette question that elicits experts’ judgments expressed as distributions. During the
elicitation procedure, a concordance probability question was used to provide feedback to the
experts on their judgments.

We evaluated the elicitation procedure in terms of validity and reliability by means of
an application with a small sample of experts. Validity means that the elicited distributions
accurately represent the experts’ judgments. Reliability concerns the consistency of the
elicited judgments over time. Four behavioral scientists provided their judgments with respect
to the correlation between cognitive potential and academic performance for two separate
populations enrolled at a specific school in the Netherlands that provides special education
to youth with severe behavioral problems: youth with autism spectrum disorder (ASD),
and youth with diagnoses other than ASD. Measures of face-validity, feasibility, convergent
validity, coherence, and intra-rater reliability showed promising results.

Furthermore, the current study illustrates the use of the elicitation procedure and elicited
distributions in a social science application. The elicited distributions were used as a prior
for the correlation, and updated with data for both populations collected at the school of
interest.

This chapter is published as Zondervan-Zwijnenburg, M.A.J., Van de Schoot-Hubeek, W.,
Lek, K., Hoijtink, H., & Van de Schoot, R. (2017). Application and Evaluation of an
Expert Judgment Elicitation Procedure for Correlations. Frontiers in Psychology, 8, 90.
doi: 10.3389/fpsyg.2017.00090
Author contributions: MZ and RS conceptualized the study. Development of the expert
elicitation questionnaire was performed by MZ, RS, WH, and KL. The pilot test of the
expert elicitation questionnaire was directed by MZ with support from KL, and facilitated
by RS. Expert elicitation was performed by MZ, and facilitated by WH. Data was analyzed
and stored by MZ. HH proposed, among other things, to pool posterior distributions as an
alternative of updating the pooled prior, and closely monitored Appendix A.2 and A.6.
MZ wrote and revised the paper with feedback of RS and HH.

https://dx.doi.org/10.3389/fpsyg.2017.00090
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The current study shows that the newly developed elicitation procedure combining the
trial roulette method with the elicitation of correlations is a promising tool, and that the
results of the procedure are useful as prior information in a Bayesian analysis.

“Expert judgement has always played a large role in science and engineering.
Increasingly, expert judgment is recognized as just another type of scientific
data ...” (Goossens et al., 2008, p. 236).

This quote is the result of 15 years of developing and applying expert judgment
elicitation procedures at TU Delft in the Netherlands. In the sectors of, for example,
nuclear applications, chemical industries, water pollution, volcano eruptions, space
shuttles, aviation, health, banking, and occupational hazards over 800 experts have
conducted elicitations on over 4000 variables (Goossens et al., 2008). In social science,
however, expert judgment is seldom used for estimation and inference, especially not
in combination with data (see Spiegelhalter et al. 2000 and O’Hagan et al. 2006 for
a few examples in health care). This may be partly explained by the fact that the
Bayesian framework that allows for the inclusion of prior knowledge elicited from
experts in data analyses was adopted much earlier and on a far greater scale by fields
of science, technology, engineering, and mathematics as compared to social science,
arts, and humanities (Van de Schoot et al., 2017). Nevertheless, the use of Bayesian
statistics is increasing in social science as well.

In Bayesian statistics, a prior distribution containing probable values for each
parameter of a model is updated with data, resulting in a posterior distribution: an
updated summary of the knowledge about the model parameters. Expert judgments
can be a useful source of prior information, especially when data is scarce (Hampson
et al., 2014). Small samples contain a limited amount of information, and the reliability
of the data may be questionable. Expert judgments can complement the information
from the data. Additionally, updating current expert judgments with new data can also
be a research goal in itself. The updated result can increase confidence in original views
of experts, or adapt these views. In the current study, we focus on the elicitation of a
correlation between two variables. The correlation–our key parameter –is modeled in a
bivariate normal distribution that consist of two means, and two standard deviations
next to the correlation parameter itself. Figure 4.1 shows the research cycle that can
be followed when expert judgments for a key parameter are to be updated with data.

When the research objective is to update expert judgments with current data, these
judgments have to be elicited first (see Figure 4.1, step 2). The elicitation of judgments
is a sensitive process, because the human mind tends to employ easy-to-use strategies
that are not necessarily rational or optimal (O’Hagan et al., 2006; Van Lenthe, 1993).
The elicitation of correlations between variables has received considerable attention
in fields other than social science. Kraan (2002) and O’Hagan et al. (2006) describe,
for example, (1) a method where strength of the relationship between variables is
expressed on a 7-point Likert scale, (2) a method where the expert is requested to

For an introduction to Bayesian statistics for social scientists we recommend Gill (2014),
Kaplan (2014), and Van de Schoot et al. (2013)
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1.	Question
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3.	Construct	
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4.	Collect	New	
Data
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Fig. 4.1: Research cycle to update expert judgments with new data.

provide Spearmans’s correlation, (3) a method where the probability of concordance
is assessed (further explained in a later section), and (4) a method that requests
conditional quantile estimates. Clemen et al. (2000) evaluated six methods to elicit
judgments about correlations with respect to accuracy, variation among experts, and
difficulty. The best method according to their study was to simply ask experts to
report a correlation. However, many others are critical to the capability of the human
mind to assess a correlation (Gokhale and Press, 1982; O’Hagan et al., 2006; Morgan
et al., 1992). It is clear that determining a correlation is not an easy task. Hence,
instead of eliciting a point estimate as in the above methods, we consider it important
to elicit a full distribution that captures the experts’ uncertainty as well.

One way to elicit continuous distributions is to ask the expert to specify fractiles
or quantiles of the distribution of interest such as the 5th, 50th and 95th. After a
training with respect to quantiles, a question to obtain the 5th percentile for the mean
of IQ in a specific population may be: “Can you determine a value such that the
mean of IQ is 5% likely to be less than this point and 95% likely to be greater than
this point?” (O’Hagan et al., 2006). Such a question should be asked for all desired
quantiles. Alternatively, one could ask for multiple quantiles at once, for example: “To
capture your uncertainty please provide the 5th, 25th, 50eth, 75th and 95th percentiles
of your uncertainty distribution” (Morales Nápoles, 2010, p. 82). Morales Nápoles
(2010) used this method to elicit a distribution for a correlation. After the elicitation
phase, distributions are fitted to the elicited quantiles (Cooke and Goossens, 1999).

Another way to obtain uncertainty distributions is the trial roulette method (Gore,
1987). Experts are provided with a number of “chips” to allocate probability to bins of a
histogram (see Figure 4.2). With 20 chips, each chip represents five percent probability.
The number of chips placed over a certain value reflects how probable the value is
according to the expert. Several variants on this method have been developed and
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evaluated. It appears that the trial roulette response format improves accuracy and
counters overconfidence (Goldstein et al., 2008; Goldstein and Rothschild, 2014; Haran
and Moore, 2010, 2014). Johnson et al. (2010b) evaluated the trial roulette method by
eliciting judgments from academic specialists about probabilities of 3-year survival
with and without medicine for pulmonary hypertension patients, and concluded that
the trial roulette method is feasible, has face validity, is internally valid, and has good
intrarater reliability. Compared to the quantile method, the trial roulette method
provides immediate visual feedback to experts, which can reduce bias, and improve
reliability and validity (Clemen et al., 2000; Haran and Moore, 2014).

Fig. 4.2: Bins and chips method according to Johnson et al. (2010b). Experts are first
asked to indicate their estimation of survival probability with an X. Subsequently, the
experts are asked to indicate the lower and upper limits of their estimate using an
X. Finally, experts are given 20 stickers, each representing 5% probability. Experts
are asked to place the stickers in the intervals to indicate the weight of belief for their
survival estimates.

The current study is the first to combine the trial roulette method to elicit
distributions with insights from the literature on eliciting correlations. We will follow
Johnson et al. (2010b) in an effort to evaluate our elicitation procedure. Moreover, the
current study illustrates the application of the procedure, and the use of the elicited
distributions in a social science application.

4.1 Evaluation of the Elicitation Procedure

In the current section we evaluate the elicitation procedure using the responses and
feedback from experts who participated in an illustrative elicitation event according to
the elicitation procedure. The elicitation concerned the correlation between cognitive
potential (i.e., IQ) and educational performance at a specific school in the Netherlands
that provides special education to youth who show severe behavioral problems. This
school serves two important populations: youth with an autism spectrum disorder
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(ASD), and youth with diagnoses other than ASD from the diagnostic and statistical
manual of mental disorders (American Psychiatric Association, 1994). Educational
performance was operationalized as the youth’s didactic age equivalent divided by
didactic age (DAE/DA). This measure is widely used among behavioral scientists
working in Dutch education to assess academic progress relative to received months of
education.

4.1.1 Material and Methods

Participants

In our illustration, the expert identification and selection were conducted at once by
our key informant regarding the subject matter: WH. WH is a school psychologist
who works with the population of interest, and is a member of the Dutch Association
of Psychologists - section Crisis Response Network School Psychologists. WH selected
six behavioral scientists working on schools for youth with severe behavioral problems
in The Netherlands, who were familiar with the school and population of interest.
Following Hora and Von Winterfeldt (1997), the selection was based on expertise,
understanding of the problem area, and statistical understanding. All six experts were
contacted by e-mail, and agreed to participate, but two of them could not attend the
scheduled meeting. The attending experts were 27, 33, 40, and 46 years old females,
and were working as behavioral scientists for 4, 9, 18, and 16 years respectively.

Expert judgment elicitation

The procedure to elicit judgments about correlations is a semi-structured face-to-face
group interview. The semi-structured setup of the procedure implies that experts are
actively invited to contribute. Furthermore, the facilitator responds to questions and
elaborates explanations such that everything is clear to each of the experts, which
promotes validity. Group interviews additionally improve judgment synthesis through
the interaction that occurs among experts, and may diminish overconfidence (O’Hagan
et al., 2006; Johnson et al., 2010a).

The procedure was developed through repeated communication with colleagues
at the department of methods and statistics at Utrecht University (UU), students of
the research masters methodology and statistics for the behavioral, biomedical, and
social sciences, and our key informant WH. Furthermore, a pilot test was conducted
with students of the UU research masters Development and Socialization in Childhood
and Adolescence. Details on the development of the procedure are provided as online
Supplementary Material (Part I). Based on O’Hagan et al. (2006), Johnson et al.
(2010a), and Johnson et al. (2010b), the elicitation procedure consists of seven phases:
(1) motivation, (2) clarification, (3) education, (4) instruction, (5) background questions,
(6) elicitation of expert judgments, and (7) evaluation. Instructions for the elicitation
procedure are provided in Appendix A.1. The material supporting the elicitation
procedure is provided as online Supplementary Material (Part II).
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The first four phases of the elicitation procedure serve to improve experts’ moti-
vation for the elicitation task, and to improve their understanding of the elicitation
subject, correlations, and the elicitation procedure. These elements have been shown
to improve validity of elicitation processes (Clemen et al., 2000; Johnson et al., 2010a;
O’Hagan et al., 2006). Experts are asked for their knowledge on the topics of interest,
and are invited to complement each other’s answers. In the fourth phase (i.e., instruc-
tion), the experts are given pencils with attached erasers and are assured that they
can revise their answers at any time to further reduce bias (Johnson et al., 2010a).
Subsequently, in the fifth phase, the experts answer some background questions about
their working experience.

In phase six, the elicitation phase, the facilitator reads the questions aloud and the
experts answer the same question simultaneously. It should be stated that experts can
discuss their answers together or think out loud. The first task, as a warming up, is
for the experts to select the most plausible correlation value from a set of illustrated
correlation categories (see Figure 4.3). The illustrated categories are based on a picture
from MathIsFun.com (Pierce, 2014), which is also used in the education phase to
explain the concept of correlations. Specifically, in our application the experts received
the following question with Figure 4.3:

“1. How strong do you think the relation between IQ and the ratio of didactic
age equivalent with didactic age (DAE/DA) is for students at school X with
an autism spectrum disorder? And for students at this school with another
DSM-IV diagnosis (e.g., ADHD, ODD, attachment disorders, etc.)? Circle the
best fitting correlation for both groups.”

Fig. 4.3: Material for elicitation question 1: Eliciting a point estimate by selecting the
best fitting correlation category for two groups.

the experts received the name of the school of interest, but for privacy reasons the name
of the school is not published
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The second question is the trial roulette question. As a first step, experts are
asked to indicate the magnitude of the relationship of interest with a cross on a
continuous scale ranging from −1 to +1 (see Figure 4.4). Specifically, the question in
our application was:

“2a. In the previous question you provided an estimate of the relation between
IQ and DAE/DA for students enrolled at school X with and without autism
spectrum disorder. Indicate with a cross on the A3 paper how strong you think
this relation is for both groups when you can choose from all values between
-1 and 1.”

Subsequently, they were asked:

“2b. Maybe you are insecure about the estimates you just provided. Indicate
on the axis at the previous page also what your lower and upper limit for this
estimate would be.”

Finally, the experts receive 20 removable stickers (� = 8 mm), each representing 5%
probability, to indicate the plausibility of values between their lower and upper limit.
The written instruction they receive is:

“2c. Use the 20 stickers to indicate the weight of your expectation at every
place between those limits (further instruction is provided by the facilitator).”

The facilitator explains that stickers can overlap horizontally to represent a very dense
distribution. The stickers, however, cannot overlap vertically, because the height of
the distribution represents probability, and each sticker represents 5% irrespective of
the vertical overlap. The stickered distributions are the target of the trial roulette
question, and the main output of the elicitation procedure.

Fig. 4.4: Material for elicitation question 2: Scale ranging from -1 to +1 on which
experts indicate (1) a point estimate, (2) a lower and upper limit, (3) the probability
of all values by means of 20 stickers each representing 5%.
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The third question is a feedback question to help the experts reflect on their trial
roulette responses, and adjust their answers when necessary. The feedback question
assesses concordance probability (Gokhale and Press, 1982). When we let Xi denote
educational performance of student i, and Yi cognitive potential of student i, then
concordance probability inquires the probability that Y2 > Y1 given that X2 > X1.
According to Clemen et al. (2000), assessing concordance probability is the second best
method to elicit correlations. Specifically, the experts answered the following questions
in our application:

“3a. Imagine we select a hundred times two random students with autism
spectrum disorder at school X. How often out of hundred do you think that
the one with the highest cognitive potential also has the best educational
performance?”

“3b. Imagine we select a hundred times two random students with a DSM-IV
diagnosis other than autism spectrum disorder at school X. How often out of
hundred do you think that the one with the highest cognitive potential also
has the best educational performance?”

The experts are asked to disregard previous responses in answering this question to
let it function as a proper feedback question. Hence, the relation between concordance
probabilities and correlations is not explained to the experts. When every expert
has written down their answer, the facilitator asks the experts for their values and
translates the values into correlations using:

r = sin
(

0.5[2πx100 − π]
)
, (4.1)

where r is the correlation, and x is the frequency as provided by the expert. The experts
are asked to review and adjust their stickered distributions considering their answers
to the concordance probability question. When the experts are satisfied with their
judgment distributions, they can continue to the evaluation phase of the elicitation
procedure. The questions asked in this phase are specified in the next section.

Elicitation event

The elicitation event took place at a school for youth with behavioral problems where
all experts had a meeting scheduled that day. Before the start of the elicitation, all
experts gave permission to audio-record the elicitation. The duration of the elicitation
event was 40 minutes.

Assessment of measurement properties

When expert judgments are elicited, validity indicates that the distributions accurately
reflect the uncertain knowledge of the experts (Van Lenthe, 1993). In the elicitation



4th

4.1 Evaluation of the Elicitation Procedure 47

procedure, validity is therefore assessed with questions about the elicitation procedure
to the experts. More specifically, in our application face validity was assessed with the
following question:

“To what degree do you feel that your expert-knowledge about the relation
between cognitive potential and educational performance was assessed accu-
rately?”
Not at all / Not really / Neutral / A little bit / Completely

Feasibility is assessed by two statements. The first statement is:

“I thought the questions with their explanations were clear.”
Not at all / Not really / Neutral / A little bit / Completely

The second statement is:

“I thought the questions were easy to answer / conduct.”
Not at all / Not really / Neutral / A little bit / Completely

After each question and statement space is provided to add an explanation. The mean
scores over experts were calculated for the two statements, and the average was taken
as a final estimate of feasibility. Additionally, the participants answer an open follow-up
question:

“Which question did you find the least clear, and why?”

Furthermore, the correlation among individual experts’ responses on the trial roulette
question and the concordance probability feedback question was computed to assess
convergent validity between questions within the procedure. Additionally, the absolute
differences between experts’ responses on the trial roulette question and the concor-
dance probability feedback question were calculated as another measure of convergent
validity. Subsequently, the coherence among experts with respect to the same question
was evaluated as an indication of validity, since we expect experts do agree to a certain
extent. Finally, a retest was conducted to assess test-retest reliability. All calculations
were conducted in R (R Core Team, 2015). Relevant data and R-code are provided as
online Supplementary Material (Part III).

4.1.2 Results

The elicitation event proceeded as planned. The experts discussed their views on
the population and measures in the clarification phase, and indicated that they
understood everything explained in the education phase. During the first question
to elicit correlations, the experts discussed the direction of the correlation, and they
mentioned that their preferred correlation was not amongst the answer categories.
Additionally, they discussed differences among IQ tests. During the second and third
question, the experts mainly discussed the task, but not their judgments. One expert
varied the vertical distance between stickers substantially, which was noted by the
facilitator and adjusted by the expert.
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Figure 4.5 shows the elicited distributions for all experts (rows) by evaluated
target population (columns), and Table 4.1 shows the experts’ point estimates. The
distributions depicted in Figure 4.5a, 4.5c, 4.5e, and 4.5g show that for youth with ASD
the correlation between cognitive potential and educational performance is between
.29 and .79 according to expert 2, while the other experts expect the correlation to be
.5 or higher, up to .86. For youth with diagnoses other than ASD (Figure 4.5b, 4.5d,
4.5f, and 4.5h), expert 2 is most specific and expects the correlation to be between
0.16 and 0.31. The other experts are somewhat more uncertain, and expect somewhat
higher correlations, but all expect that the correlation for youth with ASD is likely
larger than that for youth with other DSM-IV diagnoses.

Table 4.1: Elicited point estimates and their absolute differences for the correlation
derived from question 2a, and question 3 on concordance probability

r ASD (Q2a) r ASD (Q3a) ∆ r no ASD (Q2a) r no ASD (Q3b) ∆

Expert 1 .725 .612 .112 .457 .249 .226

Expert 2 .525 .588 .063 .200 .309 .109

Expert 3 .675 .707 .032 .375 .309 .066

Expert 4 .725 .809 .084 .500 .588 .088

Q2a refers to Question 2a where the expert is asked to provide a point estimate for the
correlation.
Q3a refers to Question 3a which requires the expert to provide a frequency for the concordance
probability for youth with ASD.
∆ refers to the absolute difference between the two previous columns.
Q3b refers to Question 3b which requires the expert to provide a frequency for the concordance
probability for youth with diagnoses other than ASD.

The raw data was digitalized after the procedure described in Appendix A.2. Figure
4.6 and 4.7 display the digitalized distributions of the experts in four ways for youth
with ASD and youth with diagnoses other than ASD, respectively. Figures 4.6a and
4.7a show the distributions as histograms, which can be directly used as priors in a
Bayesian analysis (Albert, 2009), but this is not a straightforward option in current
software. Another way to process the results is as distributions with a known form;
parametric distributions (see Figure 4.6b and 4.7b). Parametric distributions can be
derived from histogram distributions by means of the Sheffield Elicitation Framework
R file (SHELF; Oakley and O’Hagan 2010). Specific code, and the equations for the
parametric priors are provided in Appendix A.3. Parametric distributions can be used
directly as priors in a Bayesian analysis in most Bayesian software. The information
provided by the histograms and parametric distributions is similar to that of the raw
data as described in the previous paragraph.
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(a) Expert 1, youth with ASD (b) Expert 1, youth with diagnoses other than
ASD

(c) Expert 2, youth with ASD (d) Expert 2, youth with diagnoses other than
ASD

(e) Expert 3, youth with ASD (f) Expert 3, youth with diagnoses other than
ASD

(g) Expert 4, youth with ASD (h) Expert 4, youth with diagnoses other than
ASD

Fig. 4.5: Trial roulette responses for the correlation between cognitive potential and educa-
tional performance for youth with ASD and youth with diagnoses other than ASD enrolled
in special education for youth with severe behavioral problems.

The histogram and parametric distributions of the separate experts can also be
pooled to obtain an idea of the judgments of the experts as a group. One method to
aggregate the distributions is linear pooling (Genest and Zidek, 1986). Linear pooling is
a method in which the (weighted) average distribution is calculated. The determination
of weights received considerable attention in the literature. For example, experts can be
assigned equal weights, experts can be ranked, experts can rank themselves and weights
can be attributed proportionally to this ranking, or a performance based method
such as the the Classical Model (Cooke, 1991) can be applied (Winkler, 1968). The
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(a) Histogram distributions (b) Parametric distributions

(c) Pool of histogram distributions (d) Pool of parametric distributions

Fig. 4.6: Digitalized expert judgments for youth with ASD.

(a) Histogram distributions (b) Parametric distributions

(c) Pool of histogram distributions (d) Pool of parametric distributions

Fig. 4.7: Digitalized expert judgments for youth with diagnoses other than ASD.
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Classical Model determines weights based on a score for calibration and information.
This method requires relevant seed variables for which the truth is or becomes known.
In the current study we wanted the prior to reflect the current view of the experts as a
group, hence we chose equal weights. The pooled histogram distributions obtained with
equal weights are shown in Figure 4.6c and 4.7c, and further explained in Appendix
A.4. Figure 4.6d and 4.7d show the pooled parametric distributions. More details on
the linear pool of parametric distributions are provided in Appendix A.5. For the
population with ASD the mode for the correlation is around .67, and the 95% interval
of values that the experts put most weight on ranges from about .41 to .86. The
population with diagnoses other than ASD does not have one clear mode, but the
95% interval ranges from about .18 to .64 in both the histogram (Figure 4.7c) and
parametric pooled distribution (Figure 4.7d).

Validity

The four experts rated face validity with 4, 2, 4, and 4 respectively on a scale from 1 to
5. The expert that provided the lowest score wrote in the open space after the question
about the accurateness of the assessment: “More engaged with the statistics → are
your own answers reliable? It has to be correct”. The expert’s comment was interpreted
as indicating that transforming her ideas into proper responses was more difficult than
forming judgments, which is not problematic as long as she was satisfied with the final
result. The average face validity score of 3.5 was interpreted as satisfactory.

The experts provided scores of 4, 5, and 5 for clarity, and 4, 4, 4, and 5 for ease of of
the questions. The average score for feasibility was thus 4.46. The expert that provided
the 4 for clarity added that once she had thought about the questions, they were clear.
One expert did not provide a score for clarity and added that the verbal explanations
were absolutely necessary for her. The feasibility score was interpreted as excellent,
because verbal explanations are part of the procedure. Two experts indicated which
question they found least clear. One expert wrote that question 1 was the least clear,
and explained that this question contained a mistake. Indeed, the question referred to
DA/DAE instead of DAE/DA, but this was clarified when the question was addressed,
so it will not have affected the validity of the responses. The other expert wrote that
question 2 was the least clear, but did not explain her response.

Convergent validity between questions within our procedure was first evaluated
by correlating the experts’ trial roulette point estimates (Table 4.1, column 1 & 4),
and their answers to the concordance probability question converted to a correlation
by means of Equation 1 (Table 4.1, column 2 & 5). Note that the experts were asked
to reconsider their probability distribution after obtaining a correlation value for
their concordance probability response, but did not adjust their initial point estimate.
With respect to adolescents with ASD, the correlation between the responses to both
questions was .59, (SE = .57). The Bayes factor quantifying the relative evidence
for a positive correlation versus a correlation of zero as calculated by JASP 0.8.0.0
(JASP Team, 2016) with default priors was 1.2. With respect to adolescents with other
DSM-IV diagnoses, the correlation was .42 (SE = 0.64), and the Bayes factor was 0.9.
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The point estimates are an indication of sufficient convergent validity. However, the
standard errors show that with four participants the estimates must be interpreted
with caution. Additionally, the Bayes factors suggest that there is more evidence for
a positive correlation for the first population, but more evidence for a correlation of
zero for the second population.

Correlations can be perfect when a bias is systematic, therefore, the absolute
difference between the two point estimates may be an even more important indication
of convergent validity. The differences between estimates from the trial roulette and
concordance probability question are provided in column 3 and 6 of Table 4.1. Over
the two populations, the difference was on average .10 (.07 and .12 for the population
with and without ASD respectively), which we consider a small difference, and thus a
positive indication of convergent validity.

Since the trial roulette method is implemented in the procedure because of the
distributions it provides, we also comment on convergent validity between the concor-
dance probability results and the raw distributions (Figure 4.5). We note that all point
estimates given in Table 4.1 fall within the distributions specified in Figure 4.5, which
means that the point estimates provided in the concordance probability questions are
also among the plausible values in the accompanying trial roulette response. These
matching responses are a positive indication of convergent validity, but note that
participants were allowed to adjust their distributions after receiving feedback from
the concordance probability question.

The coherence between the judgment distributions of different experts was taken as
a measure of validity. Figure 4.6a shows that for the population with ASD, the expert
judgments clearly cluster and overlap supporting the validity of the procedure. Figure
4.7a shows that for the population with diagnoses other than ASD the judgments also
cluster, but the judgments of expert 2 and expert 4 do not overlap. Since the judgments
of expert 2 and expert 4 both overlap with expert 1 and expert 3, it was considered
an indication of sufficient validity. To further improve the coherence between expert
judgments, the facilitator could encourage the experts to discuss their answers and
distributions. The facilitator could, for example ask an expert:“Can you tell me about
your distribution and explain the decisions that you have made?”.

Reliability

To assess test-retest reliability, the experts were sent the same questionnaire by mail
4.5 months after the original elicitation event. Three out of the four experts were able
to respond within four weeks. The responses, however, were different than expected:
Questions were skipped (expert 2), and the experts (expert 1 and 3) that provided an
answer to the concordance probability question for youth with diagnoses other than
ASD provided values that correspond to negative correlations, which was inconsistent
with their other responses within the retest and original elicitation.

Following Johnson et al. (2010b) the ICC (2,k) of Shrout and Fleiss (1979) was
calculated over the point estimates of the three responding experts as a measure
of intrarater reliability. The ICC was 0.22 [-0.27, 1.00] with respect to youth with
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ASD. An ICC value of 0.6 would be moderate. For youth with diagnoses other than
ASD, the ICC did not provide sensible values: -1.67 [-4.35, 1.00], because the residual
variance was larger than the variance between occasions. Thus, intrarater reliability
was insufficient with respect to the point estimates.

Distributions for youth with ASD were only provided by expert 1 and 3 in the retest
(see Figure 4.8a). For youth with other diagnoses, expert 2 stickered a shape instead
of a histogram. Nevertheless, we were able to digitalize it in the form of a histogram
prior, giving Figure 4.8b. The pooled retest and original distributions are provided in
Figure 4.8c and 4.8d. Despite the inconsistencies in the concordance probability and
correlation point estimates, the trial roulette distributions in the retest were similar
to the distributions in the original test.

(a) Youth with ASD (b) Youth with diagnoses other than ASD

(c) Pool for youth with ASD (d) Pool for youth with diagnoses other than
ASD

Fig. 4.8: Digitalized expert judgments retest.

In sum, conventional and custom measures of face-validity, feasibility, convergent
validity, and coherence provided positive indications for the validity of the elicitation
procedure. The results of the retest were less positive and raise a number of possible
interpretations: the poor results for the point estimate reliability and inconsistent
concordance probabilities may show that test-retest reliability is low, or that a face-
to-face group process is important for consistent responses. The experts may have
had difficulties to make time and concentrate on the task in their own environments,
making them struggle to conduct tasks that they managed to do in the group setting.
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The trial-roulette distributions showed better test-retest reliability, although one of
the experts did not put the stickers according to the instructions. In the next section,
the practical use of the elicitation is illustrated with an empirical application.

4.2 Use of the Elicitation Procedure

Following Figure 4.1, the current section provides a full description of the empirical
application to illustrate the practical use of the elicitation procedure in a model with
the correlation as its key parameter.

4.2.1 Step 1. Question

The objective in this application was to update the current knowledge of behavioral
scientists working in special education for youth with severe behavioral problems
about the correlation between cognitive potential and educational performance for two
populations at a specific school in the Netherlands. The populations of interest were
(1) youth enrolled in special education, because of severe behavioral problems, who
have autism spectrum disorder (ASD), and (2) youth enrolled in this type of special
education without ASD but with other DSM-IV diagnoses. Examples of DSM-IV
diagnoses that youth in the second population have are oppositional defiant disorder
(ODD), attention deficit hyperactivity disorder (ADHD), and attachment problems.

Youth enrolled in special education for reasons of severe behavioral problems are a
population that is difficult to recruit, because they are considered vulnerable and are
subjected to tests more often than most of them desire. To let these youths participate,
informative consent is required from the adolescents themselves as well as a parent
or legal guardian in case the adolescent is younger than 16. The files that contained
the necessary information for our research, contained personal, and often sensitive
information, which increases reluctance to participate. As a result, we expected to
gather only a small amount of data. On itself, limited data as obtained in the current
application can provide little information, but in combination with expert judgments,
it can increase the confidence in current expert views, or indicate that adjustments of
these views might be relevant, which can also be an impulse for new research.

Ethical approval for the elicitation procedure, and data collection was given by the
Ethics Committee of the Faculty of Social and Behavioral Sciences Utrecht (FETC).
Informative consent was obtained from the adolescents. When adolescents were younger
than 16 years, informative consent was also obtained from a parent or legal guardian.

Cognitive potential was operationalized as intelligence quotient (IQ) measured with
the Wechsler Intelligence Scale for Children (WISC-III; Wechsler 1991). Educational
performance was operationalized as the youth’s didactic age equivalent divided by
didactic age (DAE/DA).
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4.2.2 Step 2: Elicit Expertise

The expert sample is described in Section 4.1.1. The elicitation procedure is described
in Section 4.1.1 and Appendix A.1.

4.2.3 Step 3: Construct Priors

In the current section, we explain how we constructed priors for all parameters in the
bivariate normal distribution: the correlation, the means of DAE/DA and IQ, and the
standard deviations of these variables.

The prior for our key parameter, the correlation, was derived from the experts’
trial roulette responses for both populations (see Figure 4.5 for the raw judgment
distributions, and Figure 4.6 and 4.7 for the digitalized judgment distributions). Since
our research goal was to update current expertise, and not expertise specifically related
to one expert, we preferred a pooled distribution as a prior. As we show in Appendix
Section A.6.4, combining a pooled prior distribution with data in one analysis gives a
posterior result equal to pooling posteriors of analyses in which each expert’s judgment
distribution was combined with the data separately. Since the latter approach is more
straightforward in software currently available, this approach was adopted in the
current study. While the pool of histogram distributions (Figure 4.6c, and Figure 4.7c)
seemed very similar to that of parametric distributions (Figure 4.6d, and Figure 4.7d),
we preferred the pool of parametric distributions because parametric distributions are
also more straightforward to deal with in current software, which seems relevant for
future users of the procedure.

Priors were also composed for the means (i.e., µ) and standard deviations (i.e., σ)
of IQ and DAE/DA. The rational for the prior of µIQ, p(µIQ), was based on literature.
Expert judgments could have been elicited for the other parameters in the model too,
but our experts lacked the time for further elicitation practices. Therefore, we made use
of the literature to specify sensible prior distributions for these parameters. Youth who
are enrolled in special education because of severe behavioral problems score well below
average on IQ. The WISC-III uses the following IQ-score classifications: intellectually
deficient, borderline, low average, average, high average, superior, and very superior
(Weiss et al., 2006). The borderline class was considered most appropriate for our
population. The accompanying IQ scores for this class are 70-79. The rounded class
middle of 75.0 was considered a good estimate for the average IQ in our population. A
variance of 400.0 (SD = 20.0) was chosen to construct a prior distribution with its first
quartile at 61.51 and third quartile at 88.49. In addition, the distribution was truncated
at the values 45.0 and 145.0, since these values constitute the range of the WISC-III.
Thus the equation for the prior was as follows: p(µIQ) ∼ N(75.0, 400.0)IµIQ∈[45,145].

The rationale for p(σIQ) was that the standard deviation of IQ is by definition
15.0 in the population (Prifitera and Saklofske, 1998). A common prior for standard
deviations is the gamma prior. The shape and rate parameter of the gamma distribution
for the standard deviation of IQ were specified such that the first and third quartile of
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the distribution were 9.57 and 19.28 respectively (M = 15.09). Thus, the equation for
the prior was as follows: p(σIQ) ∼ Γ (2.0, 1

7.5 ).
With respect to pµDAE/DA we know that youth following special education for reasons

of severe behavioral problems generally lag behind, and thus have a DAE/DA below
1.0. As a rough estimate for the average DAE/DA 0.75 was chosen. The variance of
the mean was specified to be 0.5. With this specification, the first and third quartile of
the prior distribution were 0.27, and 1.23 respectively. The distribution was truncated
at 0.0 and 1.5, because more extreme values are naturally impossible to constitute the
average for the population of interest. Thus, the equation for the prior was as follows:
p(µDAE/DA) ∼ N(0.75, 0.50)IµDAE/DA∈[0.0,1.5].

To our knowledge, no literature exists about σDAE/DA. However, on a scale of 0.0
to 1.5, we considered a standard deviation of 0.36 most likely. A standard deviation of
0.36, namely, would create a 95% confidence interval ranging from 0.04 to 1.46, which
constitutes 95% of a normal distribution that ranges from 0.0 to 1.5 with a mean value
of 0.75. The shape and rate parameters for the gamma distribution were specified such
that the first and third quartile were 0.17, and 0.49 respectively (M = 0.36). Thus,
the equation for the prior was as follows: p(σDAE/DA) ∼ Γ (2.0, 5.5).

4.2.4 Step 4: Collect New Data

We obtained informed consent for 28 adolescents enrolled at a Dutch secondary school
for youth with severe behavioral problems to collect information on the research
variables of interest from the personal records of the adolescents. For 20 adolescents,
the records contained the required data on DSM-IV diagnoses, DAE, DA, and IQ
were retrieved from participants’ school records. DAE was separately reported for
technical reading, reading comprehension, spelling, arithmetic, and vocabulary. An
average DAE-score was calculated when scores for at least three of the subjects were
available, otherwise, the DAE was regarded missing. When multiple IQ-scores were
available, the most recent WISC-III score was included.

Eleven out of the 20 adolescents for which sufficient data was present (10 male,
90.9%) belonged to the sample with ASD, and nine (6 male, 66.7%) belonged to the
sample with diagnoses other than ASD. The data for DAE/DA and IQ are plotted
in Figure 4.9. As expected, the amount of data was very limited, and would provide
little information on the correlations of interest. However, in combination with the
expert judgments, it could increase confidence in current expert views or indicate that
adjustments of these views are relevant.

4.2.5 Step 5: Update

Analysis

In a Bayesian analysis, the prior distribution is multiplied with the (density of the) data,
resulting in a posterior distribution. We conducted our analyses with the software JAGS
(Plummer, 2013) via the package rjags (Plummer, 2015) in R (R Core Team, 2015).
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(a) Youth with ASD (b) Youth with diagnoses other than ASD

Fig. 4.9: Scatter plots of the data for DAE/DA and IQ, where r indicates the correlation in
the data.

In Appendix A.6, we specify the elements of the analyses, and relevant information to
properly report a Bayesian analyses (Depaoli and Van de Schoot, 2017). Annotated R-
code and anonymized data to replicate the results is provided as online supplementary
material (Part IV).

Results

For the population with ASD, Table 4.2 summarizes the judgments of the experts,
the correlation in the data, and the resulting posteriors. The means of the posterior
distributions are all lower than those of the prior distributions as an effect of the low
correlation in the data. Another result is that the posterior distributions are more
specific than the accompanying priors and the correlation in the data by themselves
are. To finish the analysis, we combined the separate posterior distributions for the
correlation and constructed the pooled posterior distribution. The pooled posterior
distribution for the correlation is displayed in Figure 4.10a, and summarized in the last
column of Table 4.2. Figure 4.10a also depicts the aggregated prior, and the (relative
profile) likelihood (Bertolino and Racugno, 1992) of the correlation in the data.

For the population with diagnoses other than ASD, Table 4.3 summarizes the
judgments of the experts, the correlation in the data, and the resulting posteriors.
The means of the posterior distributions are similar to those of the prior distributions,
because the correlation in the data is of a similar size as well. Again, the posterior
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Table 4.2: Elements of the updating procedure: prior per expert, pooled prior, correla-
tion in the data, posterior per expert, and the pooled posterior for the correlation for
the population with ASD

M prior r M pooled prior r M data r M posterior r M pooled posterior r

[95% HPD] [95% HPD] [95% CI] [95% HPD] [95% HPD]

Expert 1 .71 [.55, .87]

.66 [.40, .87] .11 [-.52, .67]

.65 [.52, .78]

.59 [.35, .79]
Expert 2 .54 [.31, .78] .48 [.26, .68]

Expert 3 .68 [.49, .86] .60 [.42, .78]

Expert 4 .71 [.55, .87] .65 [.51, .79]

Note. HPD refers to highest probability density. CI refers to confidence interval.

(a) Youth with ASD (b) Youth with diagnoses other than ASD

Fig. 4.10: Visualization of the prior, the relative profile likelihood, and the posterior distri-
bution for the correlation.

distributions are more specific than the accompanying priors and the correlation in
the data by themselves are. As for the population with ASD, we finished the analysis
by constructing the pooled posterior distribution. The pooled posterior distribution
for the correlation is displayed in Figure 4.10b, and summarized in the last column
of Table 4.3. Figure 4.10b also depicts the aggregated prior, and the (relative profile)
likelihood (Bertolino and Racugno, 1992) of the correlation in the data.

We investigated the impact of the priors for the standard deviations by means
of a sensitivity analysis as advised by Depaoli and Van de Schoot (2017) in their
checklist for transparent and replicable Bayesian research. The alternative prior that
we used was Γ (0.01, 0.01), which is a regular prior for standard deviations. The results
show that the posterior distribution is hardly affected by our choice of priors. For the
standard deviation of DAE/DA in the population with ASD, the means of the posterior
distribution are 0.13 or 0.14 for the regular and informative priors respectively. For
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Table 4.3: Elements of the updating procedure: prior per expert, pooled prior, correla-
tion in the data, posterior per expert, and the pooled posterior for the correlation for
the population with diagnoses other than ASD

M prior r M pooled prior r M data r M posterior r M pooled posterior r

[95% HPD] [95% HPD] [95% CI] [95% HPD] [95% HPD]

Expert 1 .46 [.22, .70]

.40 [.18, .64] .32 [-.44, .81]

.44 [.23, .66]

.39 [.18, .61]
Expert 2 .46 [.22, .70] .25 [.16, .34]

Expert 3 .39 [.26, .52] .39 [.26, .51]

Expert 4 .50 [.34, .68] .49 [.34, .65]

Note. HPD refers to highest probability density. CI refers to confidence interval.

the population with diagnoses other than ASS the means of the posterior distributions
are 0.18, and 0.19. For the standard deviation of IQ, the means of the posteriors are
10.04 and 10.50 for the regular and informative prior respectively. For the population
with diagnoses other than ASS, the means of the posterior distributions are 9.91, and
10.38 for the regular and informative prior respectively.

4.2.6 Step 6: Evaluate

The pooled posterior distributions reflect the result of updating the judgments of
experts with data. The posterior distributions for both populations are compromises
between the prior judgments of the experts and the information in the data. The
posterior distributions have smaller 95% intervals than either the pooled prior or
the data alone, because our confidence increased by combining the two sources of
information. Interesting to note is that the data only slightly affected the posterior
distributions for both populations. This small impact is caused by the limited amount
of information that can be derived from 11 or 9 data points. The relatively flat and
wide likelihood distributions (Figure 4.10) illustrate this nicely.

According to the updated state of knowledge, the correlation between cognitive
potential and educational performance is most likely large for youth with ASD who
are enrolled in special education because of severe behavioral problems. By updating
the expert judgments with new data, the judgment about the correlation has been
slightly modified downwards. This modification raises the question whether additional
data would again have such an effect. A new research cycle may be started based
on this question. With respect to youth with diagnoses other than ASD, updating
the expert judgments with new data slightly modified, but mainly reinforced current
expert views of a medium correlation between cognitive potential and educational
performance. New data and new experts may further update this adjusted judgment.

Following the research cycle, the school in question gained insight into the views
of school psychologists with respect to the relation between educational performance
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and cognitive potential for two of the populations that visit the school, and the fusion
of these views with local data. A new research cycle may be started to further update
the current state of knowledge.

4.3 Discussion

The purpose of the current paper was to evaluate and apply a procedure to elicit
judgments for correlation priors. The results of this procedure using the trial roulette
method are promising. Measures of face-validity, feasibility, convergent validity, coher-
ence, and intrarater reliability showed positive results. Furthermore, the results of the
procedure were useful as prior information in a Bayesian analysis.

The proposed elicitation procedure can be used to elicit experts’ prior judgments
about Pearson’s product moment correlations for bivariate models. For models with
more variables, conditional correlations need to be elicited to retain a positive definite
correlation matrix. Further research is required to see if the trial roulette method is also
suited to elicit the conditional correlations. The elicitation of conditional correlations
increases in complexity as the size of the correlation matrix increases. Werner et al.
(2017) wrote a review on expert judgment for dependence that offers guidance on
making choices about summaries of expert knowledge for multivariate distributions.

Several digital trial roulette elicitation tools have been developed. For example,
SPIES (Haran and Moore, 2014), and the MATCH Uncertainty Elicitation Tool
(Morris et al., 2014). Advantages of these elicitation tools are that they can be easily
distributed, and there is no need to digitalize the elicited responses anymore. On
the other hand, the digital mode is less suitable for discussion among experts, and
providing additional explanation when necessary. Since correlations are considered
more complex than probabilities, an interactive (face-to-face) education phase may be
more important in this context. Given that experts in our study skipped questions
and ignored instructions outside the group setting, we expect that the suitability of
digital elicitation differs between populations of experts.

People tend to vary their responses depending on the specific “anchors” (i.e., fixed
values) they are provided with (O’Hagan et al., 2006). To avoid too much influence on
the judgment process from “random” values, we chose to provide only three tick labels
at meaningful points (-1, 0, 1) along the scale of the trial roulette question. A potential
issue raised by one of the reviewers, however, was that not providing more tick labels
may have lowered the validity of the trial roulette question, since experts may have
been unable to pinpoint specific values along the line. Further research is required
to investigate whether it is important for valid responses that experts know to what
correlation value the points along the axis correspond. If it is important for experts to
have more tick labels, it should be investigated how many tick labels are required, and
whether they should be evenly distributed along the scale, or be placed at meaningful
values like Cohen’s (1988) indications of small, medium, and large correlations. A
potential increase in validity by placing tick labels should be balanced with the loss in
validity that could be induced by anchoring.
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The evaluation of the elicitation procedure and the illustrative application have
limitations. Most importantly, only four experts participated in the final elicitation
procedure. Four experts can be sufficient, but a panel of about eight is recommended
(Cooke and Goossens, 1999). When more experts are involved, it is easier to recognize
the general opinion and the final result is less sensitive to the misjudgment of one
expert. Furthermore, the identification and selection of experts generally is a process
with multiple stages in which potential experts are asked to identify other experts until
no new names appear. Subsequently, experts are selected based on relevant criteria. In
some cases a panel may be installed to select experts based on their curriculum vitae
(Cooke and Goossens, 1999). In the illustrative application of the elicitation procedure,
one key informant identified and selected experts, which may limit the diversity of the
expert’s judgments.

Because validity is the accurate representation of experts’ judgments in our research
context, and our research data was not necessarily unbiased, we did not validate the
accuracy of the expert judgments against data. Consequently, we cannot rule out that
all experts were wrong about the truth in the population. When finding the truth about
the correlation in the population is the main goal, researchers need sufficient unbiased
data, or a seed variable that can indicate the accuracy of the experts’ judgments
(Cooke, 1991).

Considering the distributions of the experts, one might suspect overoptimism (i.e.,
expecting the effect to be larger than it is in reality) and overconfidence (i.e., specifying
too narrow intervals) to play a role. Goldstein and Rothschild (2014), however, showed
that even laymen can properly retrieve underlying population distributions about
frequencies. Overoptimism can also be reduced by pooling over experts (Johnson et al.,
2010a) as we did in the current study. Additionally, the feedback by the concordance
probability question can help experts to detect potential overoptimism. Overconfidence
may very well be an issue in the experts’ judgments. SPIES has shown to reduce
overconfidence compared to directly asking for intervals or fractiles, but even in this
method 90% intervals cover the truth in only 73.8% of the cases (Haran and Moore,
2010). It may be worthwhile to introduce extra variance in prior distributions based on
expert elicitation before updating it with data when trying to retrieve the correlation
in the population.

For future use of the elicitation procedure, naturally, the variables and accompany-
ing illustrations should be adjusted to the research questions at hand. Additionally,
we would advise to ask experts to reflect on their judgments. Such a reflection creates
an additional feedback moment and encourages experts to discuss their judgments,
which further promotes judgment synthesis. Directions to facilitate a group discussion
on expert judgments have been provided recently in SHELF 3.0 (Oakley and O’Hagan,
2016). Finally, we did not deviate from the way Johnson et al. (2010b) asks the experts
about upper and lower limits. Consequently, like Johnson et al. (2010b) we are not
certain whether the experts interpreted the limits of their plausible estimate as a 90%,
95%, 100%, or another confidence interval. Oakley and O’Hagan (2016) provide an
instructional slideshow to explain the meaning of plausible limits to experts that can
be used in future applications.
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With the elicitation procedure, users can progress from having no expert judgments
about the correlation at all, to distributions of probable values according to experts,
which can be further updated with new data. When the expert judgments and data
are alike, the updated distribution shows that experts can increase their confidence.
When the expert judgments and data are more dissimilar, the expert views can be
adjusted when both sources of information seem trustworthy, but it can also be an
important impulse for further research. Thus, combining expert judgments with data
either leads to more confident conclusions, or results in new research questions which
can be further investigated according to the research cycle.
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A.1 Elicitation Procedure Instructions

This appendix contains instructions for the elicitation procedure. The supporting
presentation and questionnaire material is provided as online supplementary material
(Part II).

A.1.1 Instructions

Terms & conditions: Ask for informed consent. Ask whether session can be recorded.

1. Motivation: Supported by slides, explain the goal of the elicitation, explain why the
experts are important, explain that the process will help formalize their expertise
into expectations about the correlations, explain that it is natural to be uncertain,
explain that uncertainty can and should be expressed in answers as well, explain
that questions can be asked at any time.

2. Clarification: Supported by slides, discuss central concepts like the research popu-
lation, and the variables for which the correlation is elicited. Ask the experts: How
would you describe <population of interest>? Do you ever run into <variable of
interest>? Do you have an idea / could you explain what <variable of interest>
stands for?

3. Education: Discuss and explain correlations with Figure 4.3.
4. Instruction: Repeat that questions can be asked at any time, answers can be

revised, and questions should be answered by experts at the same time so that
questions can be discussed while answering them. Provide pencils with attached
erasers.

5. Background Questions: Provide the questionnaire to the experts, and start the
questionnaire. Wait until everyone has finished: ensure that the experts do not
continue until everyone has finished the Background Questions.

6. Elicitation: Continue with the main questions, and ensure that questions are
answered carefully, and simultaneously. Read question 1 of the elicitation ques-
tionnaire aloud and verify that the question is clear to everyone. Explain that it is
an introductory question: later on, every value can be chosen instead of categories.
Wait until everyone has finished.
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Read question 2a of the elicitation questionnaire aloud and verify that the question
is clear to everyone. Wait until everyone has finished.
Read question 2b of the elicitation questionnaire aloud and verify that the question
is clear to everyone. Wait until everyone has finished.
Read question 2c of the elicitation questionnaire aloud, and provide 20 stickers
(for every distribution that is to be specified). Explain that they receive 20 stickers,
each representing 5% that reflect probability: They should think for how probable
it is that the correlation between <variable 1> and <variable 2> has of that
specific value and attach stickers accordingly. Ask whether the experts are content
with the distributions that they have specified. If not, they can adjust. Wait until
everyone has finished.
Read question 3 of the elicitation questionnaire aloud and verify that the question
is clear to everyone. Explain that question 3 is a new question, which they should
think about independent of previous answers. Encourage the experts to forget
everything they answered so far while responding to this question. Calculate the
correlation matching the indicated concordance probability, and give this value as
feedback to the expert. Ask the expert to re-evaluate the distribution in question
2 with this information. Ask whether the experts are satisfied with their answers,
and continue when everyone is.

7. Evaluation: Provide experts with time and privacy to answer evaluation questions.

A.2 Digitalizing Expert Judgment Distributions to Create
Histogram Priors

In this appendix the digitalization of the expert judgment distributions is explained
in detail. The result of the digitalization are histogram distributions. The histogram
distributions can be used as priors in Bayesian analyses, but also serve as input to
obtain parametric priors (see Appendix A.3).

The digitalization of an expert’s judgment distribution for the correlation consists
of the following three steps:

Step 1: Divide the range of possible correlation values from −1 to +1 into b = 1, ..., f
intervals (i.e., bars) with an equal width.

Step 2: For b = 1, ..., f , set pb = 0, where pb denotes the probability mass assigned
to a bar.

Step 3: Do for l =, ..., k,
If b ∈ [LLl,ULl], then pb = pb + TPl/Nl,
where l is a layer of stickers, k the number of layers, LLl is the first bar within layer l,
ULl is the last bar within layer l, TPl is the total probability in layer l (number of
stickers in l times .05) and Nl the number of bars in the interval [LLl,ULl].

Figure A.2.1 illustrates Step 1: the application of bars to the expert judgment
distribution. Here, f = 80, but only 40 bars are projected on the distribution itself to
promote clarity, the 80 bars are displayed below the x-axis.
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Fig. A.2.1: Distribution 1 for expert 1 with 80-bar grid (Step 1) applied.

The annotated R-code matching the digitalization steps for the first distribution
of expert 1 is:

#general settings
f = 80
b <- seq(1,f,by=1)
pb <- vector(length=f) #expert specific values k=5
#step 1
#step 2
LL <- c(64,64,64,64,66)
UL <- c(75,75,72,72,70)
TP <- c(0.25,0.25,0.20,0.20,0.10)
N <- c(12,12,9,9,5) #N <- 1+(UL-LL)
#step 3: for every bar,
#allocate probability from each associated layer for (i in 1:f){

for (l in 1:k){
if (b[i] >= LL[l] & b[i] <= UL[l]){
pb[i] = pb[i] + TP[l]/N[l]}
}}

Histograms for digitalized trial roulette priors can be generated with the package
LearnBayes (Albert, 2014) as follows:

midpt = seq(from=-1+2/f/2, to=1-2/f/2, by = 2/f)
p = seq(-1,1,length=2000)
plot(p,histprior(p,midpt,pb),type="l")

The result of this code is Figure A.2.2.

A.3 Derive Parametric Priors from Histogram Priors

Prior distributions and hyperparameters matching the digitalized judgment distribu-
tions (Appendix A.2) for the correlation can be found with the SHELF script. The
function that should be used is:
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Fig. A.2.2: Correlation between cognitive potential and educational performance for
youth with ASD according to expert 1.

elicit.group.values(N.experts = 4, method = "rp")

The function calls a window in which probability can be assigned to bars for the multiple
experts. The probabilities of the each expert’s vector pb were directly implemented.
By making small adjustments to the SHELF script (nbins = 40 instead of 10), we were
able to use 40 bars equally distributed over the interval (0,1), which was appropriate
in our situation, because all experts indicated pb = 0 for each bar in the interval (-1,0).
The resulting priors for the four experts and two populations were:

p1ASD(ρ) = lnN(ρ| − 0.354, 0.014)Iρ∈[0,1] (A.1)
p2ASD(ρ) = Beta(ρ|8.521, 7.167) (A.2)
p3ASD(ρ) = Beta(ρ|14.973, 7.181) (A.3)
p4ASD(ρ) = lnN(ρ|0.708, 0.007)Iρ∈[0,1] (A.4)

p1noASD(ρ) = N(ρ|0.462, 0.015)Iρ∈[0,1] (A.5)
p2noASD(ρ) = N(ρ|0.252, 0.002)Iρ∈[0,1] (A.6)
p3noASD(ρ) = Beta(ρ|21.727, 34.259) (A.7)
p4noASD(ρ) = Γ (ρ|32.224, 66.332)Iρ∈[0,1], (A.8)

where ASD refers to the population of youth with ASD, noASD refers to the population
of youth with diagnoses other than ASD, N denotes a normal distribution with a
mean and variance, Beta denotes a beta distribution with hyperparameters alpha and
beta, and Γ denotes a gamma distribution with hyperparameters shape and rate.

A.4 Code to Construct a Pool of Histogram Priors

When the probabilities ‘pb’, as described in Appendix A.2 are separately stored
in vectors, the vectors can be simply added to construct the pooled histogram. For
example, when the vectors are called pb1ASD, pb2ASD, pb3ASD, pb4ASD, pb1noASD,
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pb2noASD, pb3noASD, and pb4noASD, the pooled priors can be made with the
following code:

pbASD <- pb1ASD + pb2ASD + pb3ASD + pb4ASD
pbnoASD <- pb1noASD + pb2noASD + pb3noASD + pbno4ASD

A histogram can then again be constructed with the package LearnBayes (Albert,
2014) as follows:

f = 80
midpt = seq(from=-1+2/f/2, to=1-2/f/2, by = 2/f)
p = seq(-1,1,length=2000)
plot(p,histprior(p,midpt,pbASD/sum(pbASD)),type="l")

In the last line of code where the plot is constructed, pbASD is divided by its sum
(i.e., 400), to make the total integrate to 1 again.

A.5 Code to Construct a Pool of Parametric Priors

A figure of a parametric prior can be easily constructed with R-code specifying each
density, its weight (e.g., 1 divided by the number of experts for equal priors), and
subsequently adding the densities. With the parametric priors described in Appendix
A.3, the code to create a figure of the pooled distributions would be as follows:

curve(1/4*dlnorm(x,-0.3543455,0.1163011) +
1/4*dbeta(x,8.520659,7.167028) +
1/4*dbeta(x,14.973041,7.181388) +
1/4*dnorm(x,0.70803613,0.08189341), ylab="")
curve(1/4*dnorm(x,0.4620081,0.12047800) +
1/4*dnorm(x,0.2520595,0.04674401) +
1/4*dbeta(x,21.72679,34.25861) +
1/4*dgamma(x,32.76447,scale=1/65.41338), ylab="")

The pool of parametric distributions can be constructed by sampling from the separate
parametric distributions and combining the resulting data. The sampling from trun-
cated distributions can be done with the R-package Runuran (Leydold and Hörmann,
2015). The resulting pooled distribution, however, cannot be used as a prior directly.
How a pooled parametric prior should be specified to be updated at once is software
dependent. Some options are to write a sampler (Gill, 2014), write a module to add to
existing software (Wabersich and Vandekerckhove, 2013), specify the (log)likelihood
of the pooled parametric prior in Stan (Stan Development Team, 2014), or use the
zeroes trick (Ntzoufras, 2009) in other software like OpenBUGS or Just Another Gibbs
Sampler (JAGS; Plummer 2013).
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A.6 Bayesian Updating

A.6.1 The likelihood

The likelihood function of the model is given by:
p(x1, y1, ..., xs, ys|µx, µy, σx, σy, ρ) =

s∏
i=1

1

2πσxσy

√
1 − ρ2

exp

[
−

1

2(1 − ρ2)

[( xi − µx
σx

)2
+
( yi − µy

σy

)2
− 2ρ
( xi − µx

σx

)( yi − µy
σy

)]]
, (A.9)

where s denotes the number of subjects. In this bivariate normal distribution, the
variance-covariance matrix is decomposed by means of the separation strategy (Barnard
et al., 2000). This decomposition allows us to put a prior on ρ. Another advantage of
this decomposition is that when ρ ∈ [−1, 1], the variance-covariance matrix is always
invertible.

A.6.2 Prior distributions

In the analysis for the population with ASD, the parametric expert priors were the
following:

p1(ρ) = lnN(ρ| − 0.354, 0.014)Iρ∈[0,1] (A.10)
p2(ρ) = Beta(ρ|8.521, 7.167) (A.11)
p3(ρ) = Beta(ρ|14.973, 7.181) (A.12)
p4(ρ) = lnN(ρ|0.708, 0.007)Iρ∈[0,1] (A.13)

In the analysis for the population with diagnoses other than ASD, the parametric
expert priors were:

p1(ρ) = N(ρ|0.462, 0.015)Iρ∈[0,1] (A.14)
p2(ρ) = N(ρ|0.252, 0.002)Iρ∈[0,1] (A.15)
p3(ρ) = Beta(ρ|21.727, 34.259) (A.16)
p4(ρ) = Γ (ρ|32.224, 66.332)Iρ∈[0,1] (A.17)

In the equations, N denotes a normal distribution with a mean and variance, Beta
denotes a beta distribution with hyperparameters alpha and beta, and Γ denotes a
gamma distribution with hyperparameters shape and rate.

In addition to the prior distributions for the correlation, a joint prior for the
nuisance parameters (µx, µy, σx, σy) was specified:

p(µx, µy, σx, σy) = (A.18)
N(µx|75.0, 400, 0)I(µx ∈ [45, 145]))×
N(µy|0.75, 0.50)I(µy ∈ [0.0, 1.5]))×

Γ (σx|2.0,
1

7.5)× Γ (σy|2.0, 5.5)

Justifications of the hyperparameters can be found in the main text, Section 4.2.3.
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A.6.3 Posterior distribution

The posterior distribution is proportional to the prior times the likelihood of the data.
The equation demonstrates this with a pooled expert prior.

p(µx, µy, σx, σy, ρ|x1, y1, ..., xs, ys) ∝

p(µx, µy, σx, σy)×
4∑
e=1

(1
4pe(ρ)

)
× p(x1, y1, ..., xs, ys|µx, µy, σx, σy, ρ). (A.19)

The summation symbol can be moved, since it only sums over elements with
subscript e, giving:

p(µx, µy, σx, σy, ρ|x1, y1, ..., xs, ys) ∝
4∑
e=1

(
p(µx, µy, σx, σy)× 1

4pe(ρ)× p(x1, y1, ..., xs, ys|µx, µy, σx, σy, ρ)
)
. (A.20)

These equations demonstrate that updating a pooled prior with the likelihood of
the data is equal to pooling the posteriors of four analysis in which only one element
of the pooled distribution was updated with the likelihood of the data.
The posterior was thus obtained for each expert separately. From each posterior,
parameters could be sampled by means of an iterative procedure, which could then be
combined according to the linear pooling principle, resulting in a posterior distribution.

A.6.4 Analysis

All Bayesian analyses were conducted in JAGS (Plummer, 2013) via the package rjags
(Plummer, 2015) in R (R Core Team, 2015). In JAGS, a Gibbs sampler is used to
approximate the posterior. The number of chains in each analysis was 3. Each of the
chains consisted of 5,000 burn-in iterations, and 50,000 post burn-in iterations. JAGS’
automatic random number generators, and seed values were adopted. As starting
values for the chains, the maximum likelihood estimates were provided. Annotated
R-code is provided as online supplementary material (Part IV).

Convergence of the analyses was assessed by inspecting the trace plots, and
evaluating the potential scale reduction (PSR; Gelman and Rubin 1992). For the
population with ASD, the convergence plots looked satisfactory for all posterior
distributions. In addition, the PSR for the correlation parameters was calculated for
every 100 iterations. For each expert, the PSR was lower than 1.05 in more than 97.8%
of the evaluations. For more than 56.0% of the evaluations, the PSR was lower than
1.01. For the population with diagnoses other than ASD, the convergence plots looked
satisfactory for all posterior distributions. In addition, the PSR for the correlation
parameters was calculated for every 100 iterations. For each expert, the PSR was
lower than 1.05 in more than 99.8% of the evaluations. For more than 65.4% of the
evaluations, the PSR was lower than 1.01.
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Testing ANOVA Replications by Means of the Prior

Predictive p-Value

Summary. In the current study, we explain how replication of an analysis of variance can
be tested with the prior predictive p-value. That is, we test to what degree the new data
deviates from data that can be predicted based on the original results, considering relevant
features of the original study. The central role of claims by the original study is one of the
unique features of the proposed method. These claims can, for example, concern specific
values for the group means, the ordering of the group means, or effect sizes for between group
differences.

We explain the calculation of the prior predictive p-value step by step, illustrate the
method with examples, and elaborate on the topic of power. The replication test and its
integrated power and sample size calculator are made available as interactive applications. As
such, the current study supports researchers that want to adhere to the call for replication
studies in the field of psychology.

5.1 Introduction

New studies conducted to replicate earlier original studies are often referred to as
replication studies. After the latest “crisis in confidence” in the field of psychology, the
call to conduct replication studies is stronger than ever (Anderson and Maxwell, 2016;
Asendorpf et al., 2013; Cumming, 2014; Earp and Trafimow, 2015; Ledgerwood, 2014;
Open Science Collaboration, 2012, 2015; Pashler and Wagenmakers, 2012; Schmidt,
2009; Verhagen and Wagenmakers, 2014). As a result, methodology on conducting
replication studies is increasingly receiving attention (see, for example, Anderson and

This chapter is under review as Zondervan-Zwijnenburg, M.A.J., Van de Schoot, R. &
Hoijtink, H., (under review). Testing ANOVA Replications by Means of the Prior Predictive
p-Value. Meta-Psychology. doi: 10.31234/osf.io/6myqh
Author contributions: MZ and HH were involved in the initial research design. MZ drafted
and revised the article in collaboration with HH. MZ developed the interactive application,
conducted the simulation studies, and conducted the analyses. RS provided additional
feedback, and evaluated the interactive application.

https://dx.doi.org/10.31234/osf.io/6myqh
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Maxwell, 2016; Asendorpf et al., 2013; Brandt et al., 2014; Schmidt, 2009). There is,
however, no standard methodology to determine whether a replication is successful or
not (Open Science Collaboration, 2015).

The results of an original study are replicated when a new study corroborates
the original findings. A common and intuitive method to assess whether a result
is replicated is ‘vote-counting’. Vote-counting is assessing whether the new effect is
statistically significant and in the same direction as the significant effect in the original
study (Anderson and Maxwell, 2016; Simonsohn, 2015). Consider a situation with
two studies: the first is the original study, and the second study is the new study.
The original study results in a Cohen’s d (Cohen, 1988) of .30 with a p-value of .01.
A new study finds a Cohen’s d of .30 with a p-value of .07. The new study would
then be considered a non-replication of the original result, despite the fact that the
effect sizes are the same. If the new study would find a Cohen’s d of .10 with a
p-value of .04, the new result would be considered a replication of the original result.
Vote-counting has serious shortcomings. First of all, it is a dichotomous evaluation
that does not take into account the magnitude of differences between effect-sizes
(Asendorpf et al., 2013; Simonsohn, 2015). Secondly, each of the effect sizes being
significant does not imply that both effect sizes are the same, nor does one significant
effect and one non-significant effect imply that both effects are different (Gelman
and Stern, 2006; Nieuwenhuis et al., 2011). Stated otherwise, vote-counting does not
formally test whether a result is replicated (Anderson and Maxwell, 2016; Verhagen
and Wagenmakers, 2014). Thirdly, underpowered replication studies are less likely to
replicate significance, which can lead to misleading conclusions (Asendorpf et al., 2013;
Cumming, 2008; Hedges and Olkin, 1980; Simonsohn, 2015).

In the current study, we address the following replication research question: “Does
the new study fail to replicate relevant features of the original study?”. Table 5.1 shows
how our research question and proposed method relate to other replication research
questions and associated methods. Our method addresses a question similar to that in
Anderson and Maxwell (2016); Verhagen and Wagenmakers (2014); Harms (2018a);
Ly et al. (2018) and Patil et al. (2016), but now enables researchers to evaluate the
replication of relevant features of the original study other than effect sizes as well. The
bottom panel of Table 5.1 shows other replication research questions that will not be
pursued in this paper. The reader interested in these questions, should consult the
given references.

As mentioned before, a unique characteristic of our method is that it tests the
replication of relevant features of the original study, instead of effect sizes only.
These relevant features concern the claims made by the original ANOVA study. For
example, the original study often presents a certain ordering in the group means.
The original findings, however, may reflect false positives, or may be sensitive to
(intentional or unintentional) subjectivity of the original researchers. Therefore, we
provide a test that confronts the new study, which is often conducted from a more
critical and objective perspective, with the claims made by the original study. We
thus test whether the new study rejects replication of important features found in
the original study. In this perspective, the role of the original and new study are
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Table 5.1: Replication Research Questions and Methods to Address Them

Replication Research Question Method Setting Reference
Does the new study fail to replicate relevant
features of the original study?

Prior predictive p-value t-test,
ANOVA

Current study

Does the new study fail to replicate the effect
size of the original study?

Confidence interval for difference
in effect sizes

t-test, correla-
tion

Anderson and Maxwell (2016)

Prediction interval correlation Patil et al. (2016)
Does the new study replicate the effect size of
the original study?

Equivalence test t-test Anderson and Maxwell (2016)
Bayes factor t-test Verhagen and Wagenmakers (2014)
Bayes factor ANOVA Harms (2018a)
Bayes factor BF modelsa Ly et al. (2018)

Is the effect present or absent in the replication
attempt?

Bayes factor t-test,
correlationb

Marsman et al. (2017)

Is Cohen’s d in the population of a detectable
size?

Telescope test t-testc Simonsohn (2015)

What is Cohen’s d in the population? Confidence interval for average
effect size

t-test Anderson and Maxwell (2016)

What is the effect size (corrected for publica-
tion bias) in the population?

Hybrid meta-analysis t-test Van Aert and Van Assen (2017b)

aAll models for which a Bayes factor can be computed.
bThe reconceptualization by Ly et al. (2018) generalizes to most common experimental
designs.
cThe telescope test is explained in the t-test setting, but applicable to any model for which a
power analysis can be conducted.

not symmetric: one is the hypothesis generator, and the other is the hypothesis
confirmator. The claims or relevant features of original studies will be captured in the
form of informative hypotheses (Hoijtink, 2012), which are specified using equality
and inequality constraints among the means of the ANOVA model. We propose to
evaluate the replication of these hypotheses with the prior predictive p-value (Box,
1980).

The prior predictive p-value was not introduced to test replication. It was originally
presented as a method to test whether the current data is unexpected given the prior
expectations concerning the parameter values and the statistical model. A disadvantage
of the prior predictive check to test model fit is that it is leaves undetermined whether
the prior expectations about the parameter values or the model assumptions are
incorrect. Hence, as a model test the prior predictive check has been replaced by
the posterior predictive check (Gelman et al., 1996), which does not make prior
assumptions about expected parameter values, but instead uses the posterior results.

With respect to testing replication, however, the prior predictive check is a good
method for three reasons. First, instead of prior expectations, we use the posterior
distribution of the model parameters given the original data as the prior distribution.
Consequently, we have a well-founded and clear-cut prior. Second, the prior predictive
check uses a distribution of datasets that are expected given the prior (i.e., the original
study). This prior predictive distribution takes variation in both the original study
and the replication study into account. A study replicates if the new dataset is drawn
from the same population as the original dataset. To include this variation, parameter
values are sampled from the prior distribution (i.e., the posterior distribution of
the original dataset), and given each sampled set of parameter values the predicted
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datasets are simulated, that is: the predicted data is allowed to show sampling variance.
Consequently, the prior predictive distribution takes into account that findings in a
new dataset - resulting from a replication attempt - may deviate from the original
findings because of random variation instead of meaningful differences. Third, the prior
predictive check uses a ‘relevant checking function’. The relevant checking function
can concern any relevant feature of a study. As we will explain in the current paper,
we propose to include an informative hypothesis based on the original study in this
relevant checking function. As a result, we can check whether the new study fails to
replicate relevant features of the original study, while taking variation around both
studies into account.

The goal of this paper is to explain how the replication of relevant features of
original ANOVA studies can be tested. In the first section, we provide a step by step
introduction of the prior predictive p-value. To make our method to calculate the
prior predictive p-value and sample sizes for new studies easily accessible, we provide
an interactive application through the Open Science Framework at osf.io/6h8x3 as
a web tool and as an R-package (ANOVAreplication, Zondervan-Zwijnenburg 2018).
In the second section, we use the interactive software to apply the prior predictive
check to three examples from the Reproducibility Project Psychology (Open Science
Collaboration, 2012). Finally, we dedicate the third section of this paper to the topic
of power.

5.2 Prior Predictive p-Value

The evaluation of the replication of an ANOVA study by means of the prior predictive
p-value (Box, 1980) consists of three steps that will be explained below.

5.2.1 Step 1: Prior Predictive Distribution of the Data

The ANOVA model is given by:

yijd = µjd + εijd (5.1)
εijd ∼ N (0, σ2

d),

where yijd is observation i = 1, ..., njd in group j = 1, ..., J for dataset d ∈ {o, r, sim},
where o denotes the original data, r denotes the new data, and sim denotes simulated
data, the latter will be introduced towards the end of this section. Furthermore, µjd is
the mean of group j in dataset d, εijd is the error term, and σ2

d is the pooled variance
over all J groups.

The original ANOVA results can be summarized in the posterior distribution of the
parameters: g(µo, σ2

o |yo), where µo = [µ1o, ..., µJo] and yo includes all observations
yijo:

g(µo, σ2
o |yo) ∝ f(yo|µo, σ2

o)h(µo, σ2
o), (5.2)

where the density of the data

osf.io/6h8x3
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f(yo|µo, σ2
o) =

J∏
j=1

njo∏
i=1

1√
2πσo

e
−(yijo−µjo)2

2σ2
o (5.3)

and the standard prior distribution,

h(µo, σ2
o) ∝ 1

σ2
o

. (5.4)

The prior distribution is uninformative, that is, the posterior distribution is completely
determined by the original data.

To test whether new data is in line with the original results, we need to obtain
datasets that are to be expected given the original data. The prior distribution for
future parameters h(µsim, σ

2
sim) = g(µo, σ2

o |yo). Using this prior we simulate data ysim
that are to be expected given the results of the original study:

f(ysim|yo) =
∫
f(ysim|µsim, σ

2
sim)h(µsim, σ

2
sim)dµsim, σ

2
sim = f(ysim), (5.5)

where f(ysim) is the prior predictive distribution of the data. Note that f(ysim|µsim, σ
2
sim)

is the counterpart of Equation 5.3 for dataset sim instead of o. Datasets ytsim for
t = 1, ..., T , where T denotes the number of samples from the posterior, are obtained
by sampling µtsim, σ

2,t
sim from h(µsim, σ

2
sim) = g(µo, σ2

o |yo) (see Appendix A.1 for a
Gibbs sampler), and subsequently simulating ytsim from f(ysim|µtsim, σ

2,t
sim) (cf. Equa-

tion 5.3). Thus, f(ysim) consists of datasets that we would expect given the results of
the original study. Datasets ytsim have sample sizes n1r, ..., nJr, because the predicted
data needs to be compared to the new data yr that has sample sizes n1r, ..., nJr.

The steps in the following sections elaborate how new data yr can be compared to
data f(ysim) that are to be expected given the original results with a relevant checking
function. This relevant checking function encompasses a hypothesis H0 that represents
relevant features of yo as will be introduced in the next section.

5.2.2 Step 2: Hypotheses and Test Statistic

With the prior predictive p-value we want to test whether the new study fails to
replicate relevant features of the original study. Hence, we are not interested in the
classical null hypothesis claiming that “nothing is going on” (i.e., µ1d = ... = µJd).
Instead, H0 is used to catch the claims of the original study. We will provide three
ways to create hypotheses representing relevant features of the original study.

First, it may be of interest whether the means as found in the original study are
replicated in the new study. This implies that µ1r = ȳ1o, ..., µJr = ȳJo. For example, if
ȳ1o = 1, ȳ2o = 2, ȳ3o = 3 is observed, the corresponding hypothesis for the new study
is H0: µ1r = 1, µ2r = 2, µ3r = 3.

Second, in some situations it is of greater interest to see whether a new study
corroborates more qualitative conclusions of the original study. A typical qualitative
conclusion in the context of ANOVA studies is that the group means follow a certain
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ordering. For example, a researcher may claim on the basis of the original results
that the control group has a lower mean score than a group that received training A,
which in turn has a lower mean score than the group that received training B: H0:
µcontrol,r < µtrainingA,r < µtrainingB,r. Testing an ordering of means, implies for each
pair j, j′: µjr > µj′r, or µjr < µj′r, or µjr, µj′r. Another example is an original study
showing that ȳ1o < ȳ3o & ȳ2o < ȳ3o. Accordingly, the hypothesis for the new study is
H0: µ1r < µ3r & µ2r < µ3r.

Third, it may be of interest to test if the effect sizes found in the original study can be
replicated. Effect sizes can be quantified using Cohen’s d. Using this implies that for one
or more pairs j, j′: Cohen’s djj′r = µjr−µj′r

sjj′r
≥ x, where sjj′r =

(njr−1)s2
jr+(nj′r−1)s2

j′r
njr+nj′r−2 .

Furthermore, x denotes the minimum effect size. Given that we are testing more
qualitative conclusions of the original study, we advise to place the original effect size
in the qualitative categories as defined by Cohen (i.e., .00-.20 = negligible, 20-.50 =
small, .50-.80 = medium, >.80 = large) and test the replication of an effect size of at
least the size of the lower boundary of that category. For example, the original study
may demonstrate that d̂12o = .67, and d̂23o = .34, where d̂jj′o denotes an estimate of
Cohen’s d based on the observed data. Researchers may consider this result replicated
if H0: d12r ≥ .5 & d23r ≥ .2 is supported by the new data. This type of hypothesis is in
line with Simonsohn (2015), who highlights the relevance of detectability of an effect
with the example of levitation. If the original study documents 9 inch of levitation in
an experimental group, researchers may be more interested in rejecting the qualitative
claim that levitation is an existing and detectable phenomenon, that is testing, for
example, H0 : dcontrol,experimental,r > 0.2, than in assessing whether a levitation of 7
inch as found in a new study is significantly different from the 9 inch in the original
study, that is, testing H0: µexperimental,r = 9.00.

Above we have provided three options to construct hypotheses summarizing relevant
features of the original study. These hypotheses concern mean values, order restrictions,
and effect sizes. Which exact features should be covered in H0 is to be decided based on
the results and claims of the original study. The researcher conducting the replication
test should substantiate the choices made in the formulation of H0 with results from
the original study. It is good practice to also pre-register H0. In a later section of this
paper we provide an example for each of the three types of hypotheses, but first we
will explain how these hypotheses can be evaluated.

An F statistic that can quantify misfit for hypotheses like the H0’s introduced
above is F̄ (Silvapulle and Sen, 2005, p. 38-39):

F̄yd = RSSd,H0 − RSSd,Hu
S2
d

, (5.6)

where RSSd,Hu denotes the residual sum of squares in dataset d ∈ {r, sim} for the
unrestricted hypothesis Hu: µ1d, ..., µJd,

RSSd,Hu =
∑
ij

(yijd − ȳjd)2, (5.7)
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where ȳjd denotes the mean for group j in dataset d. S2
d denotes the mean squared

error,

S2
d = RSSd,Hu

N − J
, (5.8)

where N =
J∑
j=1

njr, and

RSSd,H0 =
∑
ij

(yijd − µ̃jd)2, (5.9)

where

µ̃d = [µ̃jd, ..., µ̃Jd] = argmin
µ̃d∈H0

∑
ij

(yijd − µjd)2. (5.10)

µ̃d thus contains the set of parameter estimates that minimize the residual sum of
squares for yd under the constraints imposed by H0. F̄yd is the scaled difference
between the residual sum of squares under the constraints imposed by H0 and the
residual sum of squares for yd under the unrestricted hypothesis Hu.

When we calculate F̄ytsim
for each dataset ytsim obtained in Step 1 with respect

to the hypothesis of interest from Step 2, a discrete representation of the prior
predictive distribution of the test statistic f(F̄ysim) is obtained. In the next section
this distribution is used to compute the prior predictive p-value.

5.2.3 Step 3: p-value

The third and final step is to compute the prior predictive p-value.

p = P (F̄ysim ≥ F̄yr |H0) = (5.11)

1
T

T∑
t=1

I(F̄ytsim
≥ F̄yr ),

where I is an indicator function that takes on the value 1 if the argument is true and
0 otherwise.

As illustrated in Figure 5.1, the prior predictive p-value indicates how exceptional
the observed statistic for the new data, F̄yr , is compared to its prior predictive
distribution f(F̄ysim). The shaded area on the right side of F̄yr is P (F̄ysim ≥ F̄yr |H0),
that is, the prior predictive p-value. If the prior predictive p-value is significant, we
reject replication of the relevant features of the original study by the new data.
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Fig. 5.1: An illustration of the prior predictive p-value.

Uniformity

To determine the significance of a p-value by comparing it to some preselected value
α, the p-value needs to be uniformly distributed if replication is true. Only when the
p-value is uniform, α is equal to the nominal Type I error. We will demonstrate that
this is true for the prior predictive p-value and discuss two situations.

A p-value is uniform if:

f(p ≤ α|H0) ≤ α for all α ∈ [0, 1], (5.12)

where p denotes a p-value from f(p|H0), that is, the null-distribution of the p-values.
In Appendix A.2 it is proven that the prior predictive p-value is uniform if f(F̄ysim) is
continuous.

To illustrate our proof, consider the following situation:

• An original study with ȳ1o = 1, ȳ2o = 2, ȳ3o = 3, s2
o = 5, and njo = 50.

• H0 : µ1r = 1, µ2r = 2, µ3r = 3.
• njr = 50.

Following Step 1 and 2 of the prior predictive check we obtain f(F̄ysim). Subsequently,
we simulate ytr for t = 1, ..., 100, 000 given µ1r = 1, µ2r = 2, µ3r = 3, σ2

r = 5, and
calculate the prior predictive p-value for each ytr, resulting in f(p|H0), which is plotted
in Figure 5.2a. As can be seen in Figure 5.2a, f(p|H0) is nicely uniform.
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When f(F̄ysim) is discrete, however, the prior predictive p-value is not uniform
for all α ∈ [0, 1]. For example, when we use the same setup and procedure as in the
previous paragraph, but now with H0 : µ1r < µ2r < µ3r, we obtain Figure 5.2b, where
the thick vertical line indicates a set of p-values with exactly the same value, namely
1.00. This set of equal p-values results from the fact that H0 : µ1r < µ2r < µ3r is true
for a substantial number of datasets ytr causing the associated F̄ytr to be exactly equal
to 0 and the associated prior predictive p-values to be exactly equal to 1. Generally,
however, there exists an α0 for which f(p|H0) is uniform (Meng, 1994), since all values
in f(F̄ysim) other than 0 will occur in a continuous fashion. Thus, α is uniform for
α ∈ [0, α0]. For the discrete f(F̄ysim) considered here α0 = .47. For other situations,
α0 will equal 1 − P (f(F̄ysim) = 0). A visualization of f(F̄ysim) can help to roughly
estimate α0. If the preselected α < α0, α is equal to the nominal type I error.
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(a) f(p|H0) for H0: µ1r = 1, µ2r = 2, µ3r = 3.
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(b) f(p|H0) for H0: µ1r < µ2r < µ3r.

Fig. 5.2: Illustrating the uniformity of the prior predictive p-value for two hypotheses.

Now that we have explained the three steps to compute the prior predictive p-value,
we will demonstrate the application of the prior predictive p-value in the next section
with three examples.

5.3 Examples of Testing Replication with the Prior Predictive
p-Value

To illustrate the use of the prior predictive check to assess whether relevant ANOVA
features are replicated, we selected replication studies that were part of the Repro-
ducibility Project Psychology initiated by the Open Science Collaboration 2012; 2015.
All calculations can be performed with the interactive application, which has been
developed in Shiny (Chang et al., 2017) and the functions in our ANOVAreplication
R-package (Zondervan-Zwijnenburg, 2018). The interactive application and R (R Core
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Team, 2016) scripts to replicate the analyses for the running examples are all accessible
through osf.io/6h8x3.

The first study is Janiszewski and Uy (2008), who study numerical judgements.
More specifically, they study the impact of precision of an anchor, and motivation to
adjust from the anchor on judgement bias. Janiszewski and Uy (2008), state: “Five
studies show that adjustment away from a numerical anchor is smaller if the anchor is
precise than if it is rounded” (p. 121). For the fourth experiment, this observation trans-
lates toH0: (µlow motivation,round,r > µlow motivation,precise,r) & (µhigh motivation,round,r >
µhigh motivation,precise,r). The resulting prior predictive p-value is 1.00. The data ob-
tained by Chandler (2015) were perfectly in line with the H0 describing the effect
as observed by Janiszewski and Uy (2008). Therefore, we we conclude that the
results of Janiszewski and Uy (2008) with respect to H0: (µlow motivation,round,r >
µlow motivation,precise,r) & (µhigh motivation,round,r > µhigh motivation,precise,r) are repli-
cated by Chandler (2015).

Chandler (2015) replicated the study. Dr. Janiszewski provided dr. Chandler with
the materials used in the original study, and both studies sampled college students.
Overall, the new study is a close replication of the original study. Janiszewski and
Uy (2008) did not draw conclusions about the exact mean values, but here we want
to illustrate a hypothesis that tests the replication of exact values, that is, H0:
µlow motivation,precise,r = −0.76, µlow motivation,round,r = −0.23, µhigh motivation,precise,r =
−0.04, µhigh motivation,round,r = 0.98. The resulting prior predictive p-value is < .001,
indicating that the observed new data by Chandler (2015) obtains an extreme F̄ score
with respect to H0 compared to the predicted data. Hence, for this H0, we would
reject replication. Again, note that the original study did not make these claims, hence,
the rejection of its replication is not meaningful.

The group means, standard deviations, and sample sizes for the original study
by Janiszewski and Uy (2008) and the replication attempt by Chandler (2015) are
provided in Table 5.2.

Table 5.2: Z-scores of Participants’ Mean Estimates from the Original Study:
Janiszewski and Uy (2008), and the New Study: Chandler (2015)

Low Motivation to Adjust High Motivation to Adjust
Precise Anchor Rounded Anchor Precise Anchor Rounded Anchor

Study n M (SD) n M (SD) n M (SD) n M (SD)
Original 14 -0.76 (0.17) 15 -0.23 (0.48) 15 -0.04 (0.28) 15 0.98 (0.41)
New 30 -0.35 (0.23) 30 -0.18 (0.37) 30 0.20 (0.34) 30 0.35 (0.44)

Figures 5.3-5.6 show consecutively in the interactive application how: (1) the
descriptive statistics of Janiszewski and Uy (2008) were entered to generate data with
corresponding descriptives, (2) the posterior distribution to summarize the original
data were obtained, (3) the new data of Chandler (2015) were uploaded, and (4)
the results of the prior predictive check were acquired. In every figure, the input is

osf.io/6h8x3
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provided at the left hand side, while the output is provided at the right hand side.
In Figure 5.3, the original data could have been uploaded instead of described if the
data would have been available. Similarly, in Figure 5.5, the descriptive statistics of
the new study, instead of the data, would have sufficed as well. The histogram in
Figure 5.6 depicts the predictive distribution based on the data of Janiszewski and
Uy (2008), while the red vertical line depicts F̄yr for the data of Chandler (2015).
Furthermore, the output in text provides a summary of f(F̄ysim), the value of F̄yr ,
and the associated prior predictive p-value.

Fig. 5.3: Entering summary statistics of the original study in the interactive application.

The second study is Fischer et al. (2008), who studied the impact of self-regulation
resources on confirmatory information processing. According to the theory, people who
have low self-regulation resources (i.e., depleted participants) will prefer information
that matches their initial standpoint. An ego-threat condition was added, because the
literature proposes that ego-threat affects decision relevant information processing,
although the direction of this effect is not clear. Fischer et al. (2008, p. 386) propose
“[...] that participants with reduced self-regulation resources exhibit more pronounced
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Fig. 5.4: Gibbs sampler in the interactive application.

Fig. 5.5: Uploading replication data from a .csv file in the interactive application.
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Fig. 5.6: Replication test input and output to test the replication of Janiszewski and
Uy (2008).

confirmatory information processing than do nondepleted and ego threatened partici-
pants”. The results for the dependent variable ‘confirmatory information processing’
are in line with this hypothesis. Consequently, with respect to a new study we would
want to test H0: µlow self-regulation,r > (µhigh self-regulation,r, µego-threatened,r). The group
means, standard deviations, and sample sizes for the original study by Fischer et al.
(2008) and the replication attempt by Galliani (2015) are provided in Table 5.3. The
resulting prior predictive p-value is .003, indicating that we reject replication of H0.
The ordering in the new data by Galliani (2015) results in an extreme score F̄ compared
to the predicted data.

The third study is Monin et al. (2008), who studied the rejection of ‘moral rebels’.
The theory is that people who obey the status quo dislike rebels (as opposed to obedient
others), because their own behavior is implicitly questioned by them. People who have
been secured in their moral and adaptive adequacy by means of a self-affirmation
task, however, should feel less need to reject rebels, and should feel able to recognize
the value of the rebels’ stand. With respect to the experiment that was subject to
replication, Monin et al. (2008, p. 78) provide the following hypotheses: “Prediction 1a:
Rejection by actors. Actors should like rebels less than they like obedient others.”, and
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Table 5.3: Descriptive Statistics for Confirmatory Information Processing from the
Original Study: Fischer et al. (2008), and the New Study: Galliani (2015)

Low self-regulation High self-regulation Ego-threatened
Study n M (SD) n M (SD) n M (SD)
Original 28a 0.36 (1.08) 28a -0.19 (0.53) 28a -0.18 (0.81)
New 48 -0.07 (0.45) 47 -0.05 (0.47) 45 0.13 (0.64)
aOnly the total sample size of 85 was provided in Fischer et al. (2008).

“Prediction 3a: Self-affirmation opens the heart. Self-affirmed actors should not feel
a need to reject rebels as much as individuals less secure in their sense of self-worth,
even if they still believe that rebels would dislike them.” Monin et al. (2008) indeed
observed for the dependent variable attraction: ȳrebel,o < (ȳrebel-affirmed,o, ȳobedient,o).
Furthermore, Monin et al. (2008) report that Cohen’s dobedient,rebel,o was .93 in
this specific experiment, and that it was on average .86 over the four experiments
that were part of the study. By Cohen’s effect size categories, we could say that we
replicate this study if we find that dobedient,rebel,r is large. Since ȳrebel,o < ȳrebel-affirmed,o,
drebel-affirmed,rebel,r should at least be positive. Consequently, with respect to a new
study, we would want to test H0: dobedient,rebel,r ≥ .80, drebel-affirmed,rebel,r ≥ 0. The
resulting prior predictive p-value is .154. Thus, we cannot reject replication of H0. The
group means, standard deviations, and sample sizes for the original study by Monin
et al. (2008) and the replication attempt by Frank and Holubar (2015) are provided in
Table 5.4.

The pressing question that we did not answer so far is: Was there enough power to
reject replication in the first place? In the next part of the paper, we discuss the topic
of power with a simulation study, an explanation of the importance of power, and a
description of the power and sample size calculator. Furthermore, we calculate power
for the Reproducibility Project examples introduced above.

Table 5.4: Descriptive Statistics for Attraction from the Original Study: Monin et al.
(2008), and the New Study: Frank and Holubar (2015)

Obedient Rebel self-affirmed Rebel
Study n M (SD) n M (SD) n M (SD)
Original 19 1.88 (1.38) 19 2.54 (1.95) 29 0.02 (2.38)
New 20 0.98 (1.20) 27 0.02 (1.88) 28 0.27 (1.72)

5.4 Power

Power is the probability to reject the null hypothesis (of replication) with a preselected
α when the null hypothesis is not true. Researchers typically pursue a power of .80.
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Let us denote power by γ.

γ = P (p < α|Ha), (5.13)
= P (F̄yr > F̄ysim,1−α |Ha),

where Ha is the hypothesized alternative population for which replication of H0 is to
be rejected. Note that the populations that can qualify to reject replication are endless.
The population used is determined by the theoretical context in which the replication
test takes place. The population with µ1a = .... = µJa is a special population that is
generally considered to display a non-effect in ANOVA studies. Hence, µ1a = .... = µJa
seems a natural choice for the alternative population.

In post-hoc power analyses, statistical power to reject the null hypothesis is
computed considering the observed effect - in the context of replication this is the
effect in the new study - as the population effect for which the null should have been
rejected. Post-hoc power analyses provide a biased estimate of true power (Yuan and
Maxwell, 2005). The power analysis introduced here is not a post-hoc power analysis,
because (1) the datasets generated under the null hypothesis of replication are predicted
from the original study, and (2) the datasets generated under the alternative hypothesis
are independent of the new study, instead, Ha is the effect that one generally would
like to reject replication for in ANOVA studies (i.e., µ1a = .... = µJa). Consequently,
when we calculate the required sample size for γ = .80, this sample size is also not
post-hoc, because the observed new data is not involved in its computation.

5.4.1 Simulation Study

To illustrate the power of the prior predictive p-value, we conducted a simulation
study in which we varied the effect size in the original study fo, the sample size for the
original study njo, the sample size for the replication study njr, and the hypothesis of
interest H0. Table 5.5 summarizes the setup of the simulation. The population values
for the alternative population were µ1a = µ2a = µ3a = ȳo = 0.00, where ȳo denotes
the grand mean in the original data, and σ2

a = s2
o = 1.00. µja and σ2

a could take on any
value, but we chose ȳo and s2

o respectively, since they represent ‘realistic’ estimates.
For each cell in the simulation study, 20,000 samples were drawn from Ha and power
was calculated according to Equation 5.13.

The simulation estimates of γ to reject replication with µ1a = ... = µJa = ȳo are
provided in Table 5.6. As expected, power increases with increasing effect sizes, and
increasing sample sizes of the original study. If fo, and njo are substantial, power
increases as a function of the specificity of njr and H0 as well. For small effects and
low njo, larger sample sizes for the new study and more specific H0 only emphasize
the noise in the the original study more, and do not lead to an increase in power. The
results show that when the effect size in the original study is small (i.e., f = .10),
testing replication is a futile exercise: power was < .15 in all evaluated cells. Thus,
small effects in the original study will often lead to results that seem to replicate, even
when yr is a sample from a population with µ1a = ... = µJa = ȳo. When the sample
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Table 5.5: Power Simulation Setup

H0 Ha

njo ∈ {20, 50, 100} njr ∈ {20, 50, 100}
s2

o = 1.00 σ2
a = s2

o = 1.00
fo

a

.10 ȳ1o = −0.12, ȳ2o = 0.00, ȳ3o = 0.12 }
µ1a = µ2a = µ3a = ȳo = 0.00.25 ȳ1o = −0.31, ȳ2o = 0.00, ȳ3o = 0.31

.40 ȳ1o = −0.49, ȳ2o = 0.00, ȳ3o = 0.49
H01: µ1r < (µ2r, µ3r)
H02: µ1r < µ2r < µ3r

H03: d12 ≥ 1
2d, d23 ≥ 0 b

H04: µ1r = ȳ1o, µ2r = ȳ2o, µ3r = ȳ3o

a f as introduced by Cohen (1988, p. 274-275).

b The standardized range of population means Cohen’s d = 2f
√

3J−1
J+1 (Cohen, 1988, p. 279).

size per group in the original study is 20, the same applies: none of the combinations
of effect sizes fo, sample sizes njr, and hypotheses resulted in power ≥ .80. When njo
is 50, power can be sufficient if njr ≥ 50 and the effect size is large. These results
demonstrate that imprecise estimates (i.e., large standard errors) in the original study
substantially lower the probability to reject replication for µ1a = ... = µJa = ȳo. The
power of the prior predictive p-value, however, is not surprisingly low: for a classical
ANOVA study with three groups with a sample size of 20 each, power is <.10, <.40,
and <.80 for small, medium, and large effect sizes respectively; a result that was
already pointed out in Cohen (1988, p. 313). The fact that sample sizes of 20 per
group result in insufficient power to reject replication for samples from a population
with equal means, emphasizes the importance of substantial sample sizes. Note that
power levels off for H01 and H02 at .667, and .833 respectively. Under µ1a = µ2a = µ3a,
H01:µ1r < (µ2r, µ3r) is true in 1

3 of the situations by chance. Consequently, power
cannot exceed 1− 1

3 = .667. For H02:µ1r < µ2r < µ3r, 1
6 of the combinations under

Ha is in line with replication by chance. Hence, power cannot exceed 1 − 1
6 = .833.

However, γ will increase with Ha population parameters that deviate more from the
original study parameters than µ1a = ... = µJa = ȳo, and σ2

a = s2
o. The simulation

study with µ1a = ... = µJa = ȳo presents lower boundaries of γ if the new effect comes
from a population where, for example, the ordering of means is switched.

5.4.2 The Importance of Power in Replication Studies

Only reporting the prior predictive p-value is not enough. Underpowered original
studies may result in non-significant prior predictive p-values leading to the incorrect
conclusion that not rejecting replication implies replication. The distorting impact
of underpowered studies on psychological science in general and inferences about
replication in particular is an omnipresent problem that has been emphasized already
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Table 5.6: Power

fo njo H01 H02 H03 H04
njr=20 50 100 20 50 100 20 50 100 20 50 100

.1 20 0.03 0.01 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

.1 50 0.08 0.06 0.03 0.07 0.04 0.02 0.07 0.05 0.02 0.03 0.01 0.00

.1 100 0.11 0.11 0.11 0.09 0.09 0.08 0.10 0.10 0.09 0.05 0.04 0.03

.25 20 0.13 0.09 0.05 0.09 0.05 0.01 0.12 0.10 0.06 0.05 0.03 0.01

.25 50 0.26 0.32 0.36 0.21 0.27 0.26 0.25 0.34 0.41 0.16 0.27 0.38

.25 100 0.31 0.45 0.61 0.27 0.43 0.55 0.31 0.48 0.64 0.23 0.47 0.73

.4 20 0.33 0.38 0.40 0.25 0.25 0.22 0.33 0.45 0.51 0.27 0.43 0.56

.4 50 0.50 0.67 0.68 0.46 0.69 0.83 0.51 0.74 0.90 0.51 0.86 0.99

.4 100 0.56 0.68 0.68 0.55 0.84 0.84 0.58 0.84 0.97 0.62 0.95 1.00
Text in cells with γ ≥ .80 is boldface.

Text in cells with a maximum γ is italic.

by Maxwell (2004) and many others. As we will demonstrate in the current section,
we can overcome the problem of underpowered studies for the prior predictive check
by not only reporting the prior predictive p-value, but also the power as defined in the
previous section. On the other hand, studies can also be overpowered. We will discuss
the issue of overpowered studies at the end of the current section.

An underpowered original study may, for example, have the following features:
ȳ1o = −0.35, ȳ2o = 0.00, ȳ3o = 0.35, s2

o = 1, njo = 20 for j = 1, 2, 3, reflecting a medium
effect size (f = .29 Cohen, 1988, p. 274-275) in combination with a small sample. If
in the new study ȳ1r = 0.10, ȳ2r = 0.00, ȳ3r = −0.10, s2

r = 1, njr = 100, that is, the
ordering in the new study is reversed compared to the ordering observed in the original
study, and we test H0: µ1r < µ2r < µ3r, we obtain a prior predictive p-value of .116
and cannot reject replication with α = .05! As demonstrated by the simulation study
(see for example the fourth row of Table 5.6) and the example above, the power to
reject replication can be low when the sample size in the original study is small. This
is as true for the prior predictive p-value as it is for other approaches. As highlighted
by Patil et al. (2016): Replication can only be rejected based on the claims that the
original study makes, and when these claims are vague, rejecting them is hard to
impossible.

To address the issue of underpowered original studies leading to non-significant
prior predictive p-values, our software also calculates power to reject replication when
all group means are equal instead of in line withH0. Note thatH0 here is an informative
hypothesis, and not the traditional null hypothesis that “nothing is going on”. Then, if
a non-significant prior predictive p-value is obtained, replication can only be deemed
successful if the corresponding power to reject replication in case of equal means was
sufficient. In the example above resulting in a prior predictive p-value of .116, the
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corresponding power was .03, warning us against interpreting the non-significant prior
predictive p-value as an indication of replication. Moreover, using the sample size
calculator, we learn that power for this example does not increase with larger sample
sizes for the new study. Therefore, it has to be concluded that the precision of the
original study was insufficient to test replication using new data.

If an original study has high statistical power (i.e., small standard errors) and
the conclusions of the study focus on its specific mean values, then a study can be
overpowered. That is, small and possibly irrelevant deviations between the original
and new study means may cause replication to be rejected. For example, an original
study may have the following features: ȳ1o = −0.35, ȳ2o = 0.00, ȳ3o = 0.35, s2

o = 1.
Then, for a large sample size replication is rejected if we test H0: µ1r = −0.35, µ2r =
0.00, µ3r = 0.35, even for a new study with ȳ1r = 0.30, ȳ2r = 0.00, ȳ3r = −0.30, s2

r = 1.
This issue, however, will not occur if we test the replication of the constellation of
means as found in the original study: H0: µ1r < µ2r < µ3r. In the same vein, there
is no issue if we test whether the effect sizes for pairs of means in the original study
are recovered by the new study H0: d12r ≥ .20 & d13r ≥ .50 & d23r ≥ .20. In both
situations, replication will not be rejected due to irrelevant differences between means
over the studies, but only if the new study substantially deviates with respect to H0.
Note that we do not advice to change the specification of H0 based on power: study
conclusions remain leading in determining H0.

Thus, to tackle the impact of underpowered studies, our interactive application
provides a power and sample size calculator. Overpowered studies will seldom be
an issue, since the prior predictive p-value is only sensitive to possibly irrelevant
differences between studies if the original study conclusions require the inclusion of
specific mean values in H0. Non-significant prior predictive p-values for well-powered
replication tests indicate that H0 replicates. Non-significant prior predictive p-values
for underpowered replication tests may indicate that the original study is too imprecise
to test replication of H0, and/or that the sample size in the new study is too small
to test replication. The sample size calculator can clarify if a larger new study would
render a useful replication test, or if testing the replication of H0 based on the original
study is pointless, because the original study is not informative. By calculating the
power of the prior predictive check, and in case of insufficient power, by calculating
the required sample size for a new study, we can draw meaningful conclusions with
respect to the replication and replicability of the original study.

5.4.3 Power and Sample Size Determination

As highlighted in the previous sections and in the literature (e.g., Brandt et al., 2014;
Simonsohn, 2015), power is an important characteristic of a convincing replication study.
It is thus important that researchers can calculate the power of the prior predictive
check, and can determine the sample size for a new study such that the replication
test has high statistical power. Therefore, the interactive application includes a power
and sample size calculator.
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To calculate power with the interactive application, the user is required to (1)
upload yo or to provide group means, standard deviations, and sample sizes for yo,
(2) specify H0, and (3) provide nr, where nr is a vector of length J containing the
sample size for each group j. Furthermore, the user can designate the significance level
α, which is by default set to .05.

Given yo, H0, nr, and α, the power γ is calculated as follows:
1. Following Step 1 and 2 of the prior predictive check with yo, H0, nr, and α,
f(F̄ysim) is obtained, and F̄ysim,1−α can be calculated.

2. t = 1, ..., T datasets ytr|Ha are simulated with µja = ȳo, σ2
a = s2

o, and nr. Following
Step 2 of the prior predictive check given ytr|Ha and H0, F̄ytr |Ha is calculated.

3. γ = P (F̄yr > F̄ysim,1−α |Ha) =

1
T

T∑
t=1

I(F̄ytr ≥ F̄ysim,1−α),

To determine the required sample size to reject replication with sufficient power, the
sample size calculator in the interactive application uses an iterative procedure. First,
if not already done so, the user is required to (1) upload yo or to provide group means,
standard deviations, and sample sizes for yo, and (2) specify H0. Furthermore, the user
can provide a target power level γ̃; a margin for the target power γmargin, because the
calculated power may not be exactly equal to the target power; the significance level
α; a starting value for the group sample size njr0 ; a maximum number of iterations
Qmax; and a maximum total sample size for the new study Nrmax . The default values
are: γ̃ = .825, γmargin = .025, α = .05, njr0 = 20, Qmax = 10, and Nrmax = 600.

Given yo, H0, γ̃, γmargin, α, njr0 , Qmax, and Nrmax , the required sample size for a
new study to reject replication with sufficient power when Ha: µ1a = .... = µJa = ȳo,
and σ2

a = s2
o is calculated as follows:

1. In every iteration q, γq is calculated given njrq .
2. When q > 1, njrq+1 is determined by regressing {γ1, ..., γi} on {njr1 , ..., njrq} with

a linear or quadratic (only if q = 3) function. In case of a linear regression, the
linear regression coefficient β1 is the power increase per subject. Subsequently,
njrq+1 = (γq − γ̃)/β1 +njrq . In case of regression with a quadratic function, njrq+1

is calculated by solving the polynomial: γ̃ = β0 + β1njrq+1 + β2
2njrq+1 .

3. Repeat step (1) and (2) until γq ∈ [γ̃−γmargin, γ̃+γmargin] (i.e., power is sufficient),
or γq−1 ≈ γq (i.e., power does not increase anymore up to two decimal points),
or njrq−1 = njrq (i.e, the sample size does not change anymore), or q = Qmax, or
ΣJ
j=1njrq = Nmax.

In the next section we calculate the power for the examples, and demonstrate the
sample size calculator.

5.4.4 Power in the Examples

For the replication of Janiszewski and Uy (2008) by Chandler (2015), we first
tested H0: (µlow motivation,round,r > µlow motivation,precise,r) & (µhigh motivation,round,r >
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µhigh motivation,precise,r). The resulting prior predictive p-value was 1.00, and the as-
sociated power was .75. Although .75 may not qualify as sufficient power, it is the
maximum proportion of power for this H0, which is true in 1

4 of the samples under Ha.
The data obtained by Chandler (2015) were perfectly in line with the H0 describing the
effect as observed by Janiszewski and Uy (2008). Therefore, we we conclude that the
results of Janiszewski and Uy (2008) are replicated by Chandler (2015). As an illustra-
tion, we also tested H0: µlow motivation,precise,r = −0.76, µlow motivation,round,r = −0.23,
µhigh motivation,precise,r = −0.04, µhigh motivation,round,r = 0.98. The resulting prior pre-
dictive p-value was <.001 with a power of 1.00. Thus, this illustrative H0 did not
replicate, but Janiszewski and Uy (2008) may have been overpowered to test the
replication of exact values, and hence, the differences between the studies may not
have been meaningful. Again, we emphasize that the original study conclusions should
be leading in determining H0.

For the replication of Fischer et al. (2008) by Galliani (2015), we tested H0:
µlow self-regulation,r > (µhigh self-regulation,r, µego-threatened,r). The resulting prior predic-
tive p-value was .003. The associated power was .66, indicating that we reject replication,
despite low power. Apparently, the results by Galliani (2015) deviate even more from
Fischer et al. (2008) than 34% of the samples under Ha in which all means are equal.

For the replication of Monin et al. (2008) by Frank and Holubar (2015), we tested
H0: dobedient,rebel,r ≥ .80, drebel-affirmed,rebel,r ≥ 0. The resulting prior predictive p-
value was .154 with a power of .77. This result is also demonstrated by the interactive
application in Figure 5.7. Thus, we cannot reject replication of H0, but this may be
caused by a lack of power. The sample size calculator (Figure 5.8) shows that the group
sample size in a new study needs to be at least 28 per group to achieve sufficient power
to reject replication. Since 28 per group seems a conceivable number, we consider the
conclusion of Monin et al. (2008) a suitable candidate for replication testing, but it
requires slightly larger sample sizes than currently obtained in Frank and Holubar
(2015) to arrive at sharp conclusions.

5.5 Conclusion

The goal of the current paper was to introduce the prior predictive check as a manner
to test replication of ANOVA features. Additionally, we developed an interactive appli-
cation (see osf.io/6h8x3) that enables all researchers to make use of our contribution.
With the prior predictive check researchers can find an answer to the question: “Does
the new study fail to replicate relevant features of the original study?” Identifying a
non-replication may make us wonder about the representativeness of the original study,
the new study, and the comparability of both studies. Or, as stated by Simonsohn
(2015, p. 9) “Statistical techniques help us identify situations in which something other
than chance has occurred. Human judgment, ingenuity, and expertise are needed to
know what has occurred instead.”

In the current paper, we discussed the prior predictive p-value for the ANOVA
setting. In this manner, we were able to elaborate on specific informative hypotheses, the

osf.io/6h8x3
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Fig. 5.7: Power calculator.

Fig. 5.8: Sample size calculator.



5th

94 5 How to test replication

properties of the prior predictive p-value, and three examples from the Reproducibility
Project Psychology. To test replication, the prior predictive p-value, however, is
generalizable to statistical models other than the ANOVA as well. That is, for any
model a predictive distribution can be obtained, informative hypotheses can be
constructed, and a test-statistic evaluating the constraints can be calculated. The
test as currently provided can already be used for the repeated measures ANOVA by
means of contrast weights (see, for example, Furr and Rosenthal, 2003). With contrast
weights a score for each participant can be calculated indicating to what degree the
participant follows the expected pattern. Subsequently, the replication of relevant
features of these contrast scores over groups can be tested.

By proposing the use of the prior predictive check in the context of replication,
we provide researchers with an actual, and easy to use test for replication of ANOVA
features. The availability of this test can further promote the trend to conduct more
replication studies in the field of psychology.
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A.1 R Code to Sample from Posterior Distribution

Below we provide code which can be run in R (R Core Team, 2016) to sample from
f(µo, σ2

o). We used a Gibbs sampler derived from Lynch (2007, p. 170-172).

# Gibbs sampler ####
Gibbs.ANOVA <- function(data,it=10000,burnin=500){
#R program for Gibbs sampling from conditionals

I=it+burnin
x=data$g; y=data$y
N=length(y); G=length(unique(data$g))

fit.lm <- lm(y~as.factor(x)-1) #lm, no intercept
x <- model.matrix(fit.lm)[,,drop = FALSE]

#establish parameter vectors and constant quantities
s1=matrix(1,I); b1=matrix(0,I,G)
s2=matrix(1,I); b2=matrix(0,I,G)
xtxi=solve(t(x)%*%x)
pars=coefficients(lm(y~x-1))
#Gibbs sampling begins
for(t in 2:I){ #Chain 1

#simulate beta from its multivariate normal conditional
b1[t,]=pars+t(rnorm(G,mean=0,sd=1))%*%chol((s1[t-1]^2)*xtxi)
#choleski decomposition
#simulate sigma from its inverse gamma distribution
s1[t]=sqrt(1/rgamma(1,N/2,.5*t(y-x%*%(b1[t,]))%*%

(y-x%*%(b1[t,]))))
}
for(t in 2:I){ #Chain 2

#simulate beta from its multivariate normal conditional
b2[t,]=pars+t(rnorm(G,mean=0,sd=1))%*%chol((s2[t-1]^2)*xtxi)
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#choleski decomposition
#simulate sigma from its inverse gamma distribution
s2[t]=sqrt(1/rgamma(1,N/2,.5*t(y-x%*%(b2[t,]))%*%

(y-x%*%(b2[t,]))))
}

## store samples from both chains
par1=cbind(b1,s1)[-c(1:burnin),]
par2=cbind(b2,s2)[-c(1:burnin),]
results <<- rbind(par1,par2)
colnames(results) <- paste("Mean",1:(G+1))
colnames(results)[G+1] <- "SD"

A.2 Proof of Uniformity

The following three steps proof that Equation 5.12 holds for the prior predictive p-value
when the distribution of the test statistic is continuous:

1. P (p < α|H0c) = P (F̄yr > F̄ysim,1−α|H0c), where F̄yr is the test-statistic rendering
p via p = P (F̄ysim > F̄yr |H0c) and F̄ysim,1−α is the 1-αth percentile of the
distribution f(F̄ysim |H0c).

2. P (F̄yr > F̄ysim,1−α|H0c) =
∫
F̄yr>F̄ysim,1−α

f(F̄yr |H0c)dF̄yr , where f(F̄yr |H0c) de-
notes the distribution of F̄yr under H0c.

3. For the situations considered in this paper it holds that f(F̄yr |H0c) = f(F̄ysim),
therefore

∫
F̄yr>F̄ysim,1−α

f(F̄yr |H0c)dF̄yr =
∫
F̄ysim>F̄ysim,1−α

f(F̄ysim)dF̄ysim = α,
which competes the proof.
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How to Test Replication for Structural Equation

Models

Summary. This paper introduces the prior predictive p-value as a manner to test replication
in structural equation models. With the prior predictive p-value, the user tests whether the
new study fails to replicate relevant original study findings as captured in the replication
hypothesis. Using the replication of a piecewise latent growth model as a running example,
the study explains the steps to obtain the prior predictive p-value and illustrates them with
R-code. Finally, the study demonstrates how the replication of a more advanced structural
equation model - a multilevel latent growth curve model - can be tested. All steps to compute
the prior predictive p-value are also incorporated in the Replication R-package.

The importance of conducting replication studies is increasingly recognized (Lindsay,
2015). Especially when an original study leads to remarkable and important findings,
a new study may be conducted to see if the findings of the original study can be
replicated. Several methods have been developed to test the replication of effect sizes.
See for example, Anderson and Maxwell (2016); Harms (2018a); Ly et al. (2018);
Patil et al. (2016). To test the failure to replicate relevant findings obtained with
ANOVA models, one can use the method presented in Zondervan-Zwijnenburg et al.
(2019). With this method, the replication of the ordering of the means, the difference
between means, and the exact values of the means can be tested. No literature exists,
however, that guides researchers in testing the replication of such relevant features
in structural equation modeling (SEM). The current practice is to declare a factor
structure replicated if it fits new data sufficiently, or to consider structural equation
models replicated when the direction and significance of parameters is repeated in
a second study (e.g., Carleton et al., 2010; Stokes et al., 2013). A factor structure
that repeatedly fits the data is indeed an indication of replication, just as repeated
significance. These methods, however, do not formally test replication and are thus not
able to reject replication. For example, failure to repeat significance can even occur

This chapter will be submitted as Zondervan-Zwijnenburg, M.A.J. How to Test Replication
for Structural Equation Models.
Author contributions: MZ is the sole author.
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with samples from the same population due to sampling variance and measurement
error (Patil et al., 2016; Stanley and Spence, 2014). Hence, repeated model fit or
significance do not lend themselves for conclusions about the (non-)replication of
original results.

The current paper introduces the prior predictive p-value as a method to test
replication in SEM. The prior predictive p-value provides an answer to the following
replication research question: Does the new study fail to replicate relevant features of
the original study? In answering this research question, the prior predictive p-value
takes into account that the results of the new study may deviate from the original
because of random variation instead of meaningful differences. Furthermore, the current
paper proposes to evaluate an informative hypothesis (Hoijtink, 2012) with the prior
predictive p-value that contains the claims and relevant results of the original study.
These claims can, for example, concern effect sizes, ordering of parameter magnitudes,
or specific parameter values. In this manner, the prior predictive p-value focuses on
the replication of relevant conclusions of the original study, and not on values of
parameters that are nonessential to theory. Especially in SEM, where the model often
encompasses many estimated parameters, the focus on the replication of relevant
outcomes is an important feature.

The current paper also explains step-by-step how replication of relevant SEM
results can be tested with the prior predictive p-value (Box, 1980) in R (R Core
Team, 2017) with the Replication package (Zondervan-Zwijnenburg, 2019). In the
background, the Replication package uses lavaan (Rosseel, 2012) and blavaan
(Merkle and Rosseel, 2018) to analyze structural equation models. Readers should be
familiar with the statistical software package R and the structural equation model
that they want to analyze. Advanced statistical knowledge of, for example, Bayesian
analyses is not required, but hands-on Bayesian knowledge can be very helpful (see, for
example, Rupp et al., 2004; Depaoli and Van de Schoot, 2017; Van de Schoot et al.,
2013). As Supplementary Materials, R-code and data are provided that can be used
to execute each of the steps in this paper. Note that for privacy considerations, the
associated datasets in the Supplementary Materials at https://osf.io/as7kz are
simulated data based on the covariance matrix of the original datasets. Consequently,
the results can differ from those as reported in the manuscript, but the steps taken to
arrive at the results are the same.

The next section describes the background and technical steps of the prior predictive
p-value. The subsequent sections explain the steps to compute the prior predictive
p-value in more detail with a piecewise latent growth model as a running example.
Next, the prior predictive p-value is demonstrated for a multilevel latent growth curve
model with predictors. The paper closes with a discussion and conclusion.

For both examples, data and permission for their use were received from key researchers
in the projects

https://osf.io/as7kz


6th

6.1 The Prior Predictive p-value 99

6.1 The Prior Predictive p-value

Patil et al. (2016) and Zondervan-Zwijnenburg et al. (2019) introduced the idea
that when we observe the results of an original study, it gives us expectations about
results from future replication efforts. This means that if we capture the original
study results in a Bayesian posterior distribution, this posterior distribution holds
our prior expectations for future data. The prior distribution contains a range of
parameter values, with associated probabilities, that could all occur in future studies
The prior predictive check (Box, 1980) uses the prior distribution and the statistical
model to obtain a prior predictive distribution: a distribution with future datasets
that can be observed given the prior (here: the original results). That is, given the
prior expectations for parameters in future data, we simulate datasets. The next step
is to compare the predicted datasets with the new observed dataset and compute a
prior predictive p-value. To compare the datasets, we use what Box (1980) calls a
‘relevant checking function’. The relevant checking function is a function that computes
a relevant value with which the predicted data can be compared to the observed new
data. Zondervan-Zwijnenburg et al. (2019) proposed to evaluate the deviation from a
replication hypothesis H0. The replication hypothesis H0 is an informative hypothesis
(Hoijtink, 2012) that is based on the claims and results of the original study. First, we
compute the misfit to H0 for each predicted dataset and for the observed new dataset.
Next, we can compute the proportion of predicted datasets that scores more extreme
in terms of deviation from H0 than the new observed data. This proportion is the prior
predictive p-value. A small prior predictive p-value indicates that the results of the new
observed data are in the extreme end of results that we could obtain given the original
study, considering H0. A short technical explanation of each of the steps follows below,
while the remainder of the study describes the steps in detail accompanied by R-code
and empirical examples.

6.1.1 Step 1: The Prior Predictive Distribution

Let us denote the data by yd, where d ∈ {o, r, s} with o for the original data, r for the
new data, and s for predicted data. In the context of replication, we base the prior
for future data on the original study yo. That is, we sample from the posterior of the
original study g(θo|yo).

g(θo|yo) ∝ f(yo|θo)h(θo), (6.1)
where θo = θo1, ..., θoJ contains the J estimated model parameters for the original
study, f(yo|θo) is the likelihood of the original data, and h(θo) is a prior distribution
for the parameters of the original study. The prior h(θo) should be specified such that
the posterior is determined by the data. The posterior g(θo|yo) is our prior for future
data h(θs).

Using this prior distribution h(θs) and the likelihood of the model at hand f(ys|θs),
the prior predictive distribution of new data can be determined, that is, the distribution
of the data sets that are expected given the results of the original study:
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f(ys|θs)h(θs)dθs = f(ys), (6.2)

To obtain a discrete representation of the predictive distribution of the data f(ys), we
sample b = 1, ..., B parameter vectors from h(θs), and use them to simulate t = 1, ..., T
new datasets with sample size Nr. For simplicity, the collection of T samples from
f(ys) will be referred to with f(ys). The section “The Prior Predictive Distribution”
elaborates on the procedure to obtain f(ys).

6.1.2 Step 2: The Replication Hypothesis H0

To determine if the new study results significantly diverge from what we expect given
the original study, we need to compare yr to f(ys). Many aspects of yr to f(ys)
can be compared (e.g., mean values, maximum values, etc.), but we want to evaluate
relevant features, which is what (Box, 1980) meant when he advised to use a ‘relevant
checking function’. In the context of replication, Zondervan-Zwijnenburg et al. (2019)
propose to evaluate an informative replication hypothesis H0 that is based on the
results and conclusions of the original study. Both equality and inequality constraints
among the parameters of the model at hand can be used to specify H0, that is, H0:
Rθ > r & Sθ = s (Hoijtink, 2012; Silvapulle and Sen, 2005), where R and S are
K × J restriction matrices, J denotes the number of estimated parameters, and K
the number of restrictions in H0, while θ is the parameter vector of length J , and r
and s are vectors of length K containing the constants in the replication hypothesis.
The section “The Replication Hypothesis H0” elaborates on the specification of H0
with examples.

6.1.3 Step 3: The Prior Predictive p-value

Given H0, we compute the test statistic D for the predicted and new data resulting
in f(Dys) and Dyr . A useful and general operationalization of D is an approximate
likelihood ratio test statistic of the constrained model in which θ meets all restrictions
given in H0, and the unconstrained hypothesis Hu where θ is estimated as usual to
best fit the data at hand (Silvapulle and Sen, 2005, p. 59-63):

D = ln fu
f0

(6.3)

= (ln fu − ln f0),

where
fu = max

θ∈Hu
f(θ|yd), (6.4)

that is, the unconstrained maximum likelihood for the parameters of interest, and

f0 = max
θ∈H0

f(θ|yd), (6.5)
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that is, the maximum likelihood for the parameters of interest under the constraints
imposed by H0.

It is not easy to obtain the maximum likelihood under the constraints imposed by
H0 for all statistical models. Hence, to compute f , we use a normal approximation of
the density of the data: θ ∼ N(θ|Σθ). In that case, we can use the solve.QP function
from the quadprog R-package (Turlach and Weingessel, 2013), which finds the f0
solution by approaching it as a quadratic programming problem. With a sufficiently
large sample, it is appropriate to use the variance-covariance matrix of the data Σθ,
especially when the parameters in H0 are unbounded, such as regression parameters
and means. The approximate log-likelihood ratio may be less suited for small samples
and bounded parameters in H0 such as correlations and variances.

When we calculate Dt
s for each predicted dataset yts given H0, a discrete repre-

sentation of the prior predictive distribution of the test statistic f(Dys) is obtained.
f(Dys) is the distribution of the test statistic for data that we expect given the original
results. Finally, we can compute the prior predictive p-value:

P (Dys ≥ Dyr |H0). (6.6)

Given a predefined α, a significant prior predictive p-value makes us reject replication
of the relevant findings in the original study: given the original results the new data
obtain an extreme score with respect to H0. Thus, considering H0, the new data
significantly deviate from the original results.
The next section illustrates each of the steps above in more detail with a piecewise
latent growth model as a running example.

6.2 The Original Study

All replication efforts start with an original study. For example, Achterberg et al.
(2017) evaluated the neural and behavioral correlates of social feedback and subsequent
aggression in 74 7-10 year old children. The experiment consisted of 60 trials in which
all children received 20 trials of positive, 20 trials of neutral, and 20 trials of negative
feedback from an alleged unknown peer. In each trial, the children could respond to
the feedback with a noise blast.

Below we take a look at the first six lines of the data yo, which is the object y.o
in R. The data contains the average length of the noise blast in seconds per feedback
condition (i.e., positive, neutral, negative).

head(y.o) #head of data

## positive neutral negative
## 1 1.310263 1.724949 3.257900
## 2 1.603333 1.709088 2.791250
## 3 1.596444 1.769241 3.464211
## 4 2.600875 2.852826 3.180250
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## 5 1.575500 1.849586 1.427650
## 6 1.942105 2.130500 3.500000

The statistical model in Achterberg et al. (2017) was a repeated measures ANOVA
with each feedback condition as a repeated measure. To model all effects of interest
(i.e., including differences between conditions), we use a piecewise latent growth model
with fixed effects. Because the model specification is the same for all involved datasets
(i.e., original, new, predicted), we will drop the subscript d in yd when we discuss the
model specifications. If we let y be a vector of length p = 3 with observed variables,
the measurement model is given by:

y = ν +Λη + ε, (6.7)

where ν is an item mean vector of length p, η is a vector with latent variables of
length q = 3, Λ is a p× q matrix with factor loadings, and ε is a vector with residuals
for y of length p. ε ∼ N(0,Θ) where Θ is a covariance matrix.

For the structural model, let α be a vector with q latent means, and ζ a vector
with latent errors of length q:

η = α+ ζ, (6.8)
where ζ ∼ N(0,Ψ ) with all elements of the covariance matrix Ψ equal to zero to have
fixed (i.e., non-random) effects.

The piecewise latent growth model is modeled with an intercept (αi) at the first
measurement (i.e, the positive condition), a linear growth factor (αs1) from the positive
to the neutral condition and another linear growth factor (αs2) from the neutral to
the negative condition. To estimate the latent factors, the elements in the item mean
vector ν are fixed at 0. Thus, our fixed effects piecewise latent growth model contains
the following non-zero matrices:

y =

ypositiveyneutral
ynegative

 ,Λ =

1 0 0
1 1 0
1 1 1

 ,α =

 αi
αs1
αs2,

 ,Θ =

Θpositive 0 0
0 Θneutral 0
0 0 Θnegative

 .
As can be seen above, the estimated parameters are αi, αs1, αs2, Θpositive, Θneutral,
and Θnegative.

The lavaan model syntax is provided in Appendix B.1 and in the Supplementary
R-code at https://osf.io/as7kz. In the model, we can also compute the effect sizes
between the different measurements. To do that, we divide the effect of interest by the
pooled standard deviation. That is: dαs1 = αs1

(
√
Θpositive+Θneutral)/2

(i.e., the standardized
difference between the positive and neutral condition), dαs2 = αs2

(
√
Θneutral+Θnegative)/2

(i.e., the standardized difference between the neutral and negative condition), and
dαs1+αs2 = αs1+αs2

(
√
Θpositive+Θnegative)/2

(i.e., the standardized difference between the positive
and negative condition). The pooled standard deviations and effect sizes are not
estimated, instead they are derived from the estimated parameters.

If we store the model syntax in model.A, we can run the piecewise latent growth
model in the R-package lavaan as shown below.

https://osf.io/as7kz
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library(lavaan)
fit.o <- sem(model=model.A,data=y.o)

The resulting latent means, residual variances, and effect sizes are:

## id est se p-value
## a_i 10 1.58 0.10 0.000
## a_s1 11 0.39 0.12 0.001
## a_s2 12 0.88 0.11 0.000
## e_positive 13 0.71 0.12 0.000
## e_neutral 14 0.41 0.07 0.000
## e_negative 15 0.45 0.07 0.000
## d_s1 28 0.53 0.17 0.002
## d_s2 29 1.35 0.18 0.000
## d_s1+s2 30 1.68 0.19 0.000

The column id shows the parameter identification value assigned by lavaan, the
column est shows the estimate, the column se shows the standard error, and the
column p-value contains the p-value. It is important to note the standard error.
Standard errors inform us about the accuracy of a parameter. The larger the standard
error, the wider the confidence interval for the parameter, and the more future findings
will be in line with the original finding. For a useful prior predictive p-value, the
original study needs to produce specific results and conclusions. Original studies that
are suitable for replication testing contain statistically significant findings and effect
sizes that are at least of a medium size. Both indicators are present in Achterberg
et al. (2017).

Given that we have an original study that is suitable for replication testing, we can
take two steps to compute the prior predictive p-value: Step 1: The Prior Predictive
Distribution, and Step 2: The Replication Hypothesis H0. We will first continue with
step 1, in which we predict what new datasets can look like given the current original
results.

6.3 The Prior Predictive Distribution

The prior predictive distribution is a distribution of predicted datasets given the model
and prior distribution. If we expect the original study to replicate, then the original
study contains prior information for future datasets. Following this line of reasoning,
we let the results of the original study determine the prior predictive distribution. The
results of the original study are captured in the posterior distribution that results from
a Bayesian analysis of the original data g(θo|yo). The posterior g(θo|yo) is our prior
for predicted data h(θs). In this manner, we base the prior predictive distribution on
the original results. The remainder of this section illustrates with R-code how a prior
predictive distribution can be obtained. The data and code to reconstruct all output
are provided in the Supplementary Materials at https://osf.io/as7kz.

https://osf.io/as7kz
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The posterior distribution g(θo|yo) is calculated through an iterative process (e.g.,
Markov chain Monte Carlo) in which each iteration results in a set of parameter
values. To begin the iterative procedure, starting values are used. Over the course of
iterations, the impact of the starting values on the results diminishes and is expected
to disappear. To remove the impact of the starting values, the first couple of thousands
of iterations are regarded as burn-in iterations and they are not included in the
posterior distribution. Below, we run a Bayesian analysis on the Achterberg et al.
(2017) data with the R-package blavaan (Merkle and Rosseel, 2018) with the default
prior distributions (see Appendix B.2) and the default number of 5,000 burn-in and
10,000 post burn-in iterations. An in-depth guide on how to run and evaluate a
Bayesian analysis is (Depaoli and Van de Schoot, 2017).

library(blavaan)
b.fit <- bsem(model=model.A,data=y.o)

Here, model.A is the lavaan syntax for the piecewise latent growth model as
described in the previous section and provided in Appendix A. Figure 6.1 shows the
histogram that depicts the samples from the posterior for αi. Each bar in the histogram
counts how often the estimation process resulted in the associated range of values.
The more iterations are used in the analysis, the smoother the histogram will look.
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Fig. 6.1: Samples from the posterior for αi.

One practical advantage of a posterior distribution is that we can easily sample
model parameter values from it. For example, for Achterberg et al. (2017), we can
take a sample from the posterior distribution of the parameters in the piecewise latent
growth model.
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posterior <- blavInspect(b.fit,"mcmc")
posterior[[1]][1,1:6]

## alpha[1,1,1] alpha[2,1,1] alpha[3,1,1]
## 1.65 0.35 0.83
## theta[1,1,1] theta[2,2,1] theta[3,3,1]
## 0.69 0.38 0.48

This sample contains values for αi, αs1, αs2, Θpositive, Θneutral, and Θnegative. The
parameter values are our prior information to predict (i.e., simulate) future data under
the same statistical model. We can feed each set of model parameter values from a
selected posterior sample to simulation software, such as the simulateData function
in the R-package lavaan Rosseel (2012). This function then simulates a dataset under
the imposed model with the drawn set of posterior parameter values as population
parameter input. We require that this future dataset has the sample size of the new
dataset in order to get a prior predictive distribution with data sets comparable to
the new data set. As stated before, our simulation results in a discrete representation
of the prior predictive distribution. To produce a proper representation of the prior
predictive distribution, we sample many times from the posterior distribution of the
original data and predict a dataset for each of those samples.

Within one function, ppc.step1, the R-package Replication can (1) obtain the
posterior distribution for the original data accompanied by traceplots and a summary
of the results for verification, (2) draw samples from the posterior distribution, and
(3) simulate future data. The function ppc.step1 takes (1) the statistical model of
interest, (2) the original dataset, and (3) the sample size of the new dataset. By
default, the function will use 2 chains, 1,000 model adaptation iterations, 5,000 burn-
in samples, 5,000 post burn-in samples and default blavaan priors to obtain the
posterior distribution of the original data. Furthermore, the function will by default
simulate 5,000 datasets for the prior predictive distribution. The default settings can
be adjusted, and optional commands can be added as well. For example, the user
can also choose to let the Bayesian software continue to iterate until it determines
that convergence is achieved with convergence = "auto". The function can also be
used with missing data (see the Section “Missing Data”). Other lavaan or blavaan
modelling commands (e.g., multiple group analysis, type of estimator) can be added as
well, but these are optional. Run ?ppc.step1 for a full overview of options and their
descriptions. Here we load the Replication package and apply the function to the
data of Achterberg et al. (2017) with the required arguments only, using the default
settings for the remaining arguments.

library(Replication)
step1.A <- ppc.step1(y.o=y.o,model=model.A,n.r=nrow(y.r))

The 5,000 datasets that we obtain as a result, are datasets that can occur given
the results of the original study with the sample size of the new study. We can take a
look at the top of the first predicted dataset:
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head(step1.A$y.s[[1]])

## positive neutral negative
## 1 1.1462610 1.612134 2.223643
## 2 2.2310011 1.669518 2.172725
## 3 -0.5843558 3.381702 3.759951
## 4 0.6607782 1.729814 2.525175
## 5 2.4944977 2.352052 3.325300
## 6 1.5036758 1.376774 3.476710

As you can see, the values are not equal to those in the original dataset, because
we do not need to expect exactly the same values for replications of the original study.
The predicted observations, however, relate to the original study in the sense that
they are predicted based on parameter values of the original dataset.

To compare the predicted data to the observed new data, we need to determine
what relevant features are to compare the datasets by. These features will be captured
in the replication hypothesis H0. Hence, the second step to compute the prior predictive
p-value is to define the replication hypothesis H0, which is further explained in the
next section.

6.4 The Replication Hypothesis H0

The findings of the original study can be summarized in an informative hypothesis
H0 (Hoijtink, 2012; Silvapulle and Sen, 2005; Zondervan-Zwijnenburg et al., 2019).
An informative hypothesis is a hypothesis that contains information about model
parameters. By means of constraints, the informative hypothesis limits the values that
the parameter is allowed to take on. Types of constraints are: range constraints, order
constraints, and equality constraints (Silvapulle and Sen, 2005).

Consider the case of Achterberg et al. (2017), where the statistical model is a piece-
wise latent growth model with the estimated parameters αi, αs1, αs2, Θpositive, Θneutral,
and Θnegative. In the original study we found: αi = 1.58, αs1 = 0.39, αs2 = 0.88,
Θpositive = 0.71, Θneutral = 0.41, and Θnegative = 0.45. Additionally, dαs1 = 0.53,
dαs2 = 1.35, and dαs1+s2 = 1.68.

An informative hypothesis contains a range constraint when it specifies the range
of values that the parameters are in. For example, H0: αi > 1.5, αs1 > 0, αs2 > 0.5.
An order constraint, on the other hand, specifies how certain parameters relate to
each other, for example, H0: αs1 < αs2. Alternatively, an equality constraint can, for
example, have the following forms: αs1 = αs2, or αi = 1.58. Note that these examples
do not include information on Θpositive, Θneutral, and Θnegative. The reason that the
residuals are not included in H0 is that the original study makes no claims about these
parameters. Hence, we do not want to put a restriction on them.

The content of the replication hypothesis H0 depends on the claims and results of
the original study. For example, Achterberg et al. (2017) state:
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“The combined effect for the difference between positive and neutral was
medium in size ... The difference between neutral and negative feedback showed
a large combined effect size ... The difference between positive and negative
feedback also showed a large combined effect size ...” (p. 111)

Based on these claims, we want to test the replication of these effect sizes. For
effect sizes, Zondervan-Zwijnenburg et al. (2019) recommend to use the lower limits of
Cohen’s effect size categories (i.e., .20 for a small effect, .50 for a medium effect, and
.80 for a large effect) as a lower limit for replication in the replication hypothesis. Thus,
in the case of Achterberg et al. (2017) we specify the following replication hypothesis,
H0: dαs1 > .50, dαs2 > .80, and dαs1+αs2 > .80.

If the claims by the original study do not concern effect sizes, but rather highlight
the significance of certain parameters, the user needs to determine the reasonable lower
limit for replication. As an example, consider that we have two statistically significant
parameters of interest: αs1 = 0.39 and αs2 = 0.88. Some options that we have for H0
are:

1. H0: αs1 > 0, αs2 > 0
2. H0: αs1 > 0.30, αs2 > 0.50
3. H0: αs1 > 0.39, αs2 > 0.88

The main criterion is that the lower limit in H0 needs to stay close to the original
study and its theory. When the content of the replication hypothesis H0 is determined,
it needs to be formalized into a more technical format that can be used by software
such as R (R Core Team, 2017).

To include the replication hypotheses in the Replication package, we specify the
hypothesis within quotes with the plabels given in the parameter table resulting form
ppc.step1 as variable names and & to separate constraints within the hypothesis. If
H0 concerns effect sizes, a vector s.i includes the id values of the (pooled) standard
deviations in the summary table produced by ppc.step1 by which the parameters of
interest should be standardized.

The replication hypothesis for Achterberg et al. (2017) is H0: dαs1 > .50, dαs2 > .80,
and dαs1+αs2 > .80. To prepare this hypothesis as input for the Replication package,
we look at the parameter table resulting from step1.A and identify the plabels for
the coefficients of interest. Furthermore, we identify the blavaan id’s of the pooled
standard deviations.

#have a look at the parameter table and identify latent slope factors
step1.A$pT
#s.i identify id of pooled s coefficients by their defined labels
pT <- step1.A$pT
s.i <- c(pT$id[which(pT$lhs=="s12")],pT$id[which(pT$lhs=="s23")],

pT$id[which(pT$lhs=="s13")])

We find that the plabel for αs1 = .p11., and for αs1 = .p12.. Thus, the hypothesis
is ".p11.>.50 & .p12.>.80 & .p11.+.p12.>.80" with s.i=s.i.
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To recap briefly, we can compose an informative replication hypothesis H0 that
captures the main findings of the original study. The replication hypothesis is the key
element to compute the test statistic D that we use to compare the new observed
dataset to the predicted datasets. Before we compute the test statistic, however, we
will discuss the new study in the next section.

6.5 The New Study

Next to the predicted data that the Replication package creates, we have the observed
new dataset. The new dataset is the result of a replication effort. Just as for original
studies, it is important that the new study has a substantial sample size that yields
sufficient power to test the model at hand. Muthén and Muthén (2002) explains how
a Monte Carlo study can be used to estimate the required sample size. In the context
of replication, Simonsohn (2015) recommends that the sample size for the new study
is 2.5 times the original sample size.

The new study in this example is Achterberg et al. (2018). The behavioral task in
Achterberg et al. (2018) is a direct replication of the behavioral task in Achterberg
et al. (2017) with 509 participants, which is almost 7 times the original sample size.
For this data we want to test whether Achterberg et al. (2018) deviates more from
Achterberg et al. (2017) with respect to H0: dαs1 > .50, dαs2 > .80, and dαs1+αs2 > .80
than expected by chance. How we can conduct this test is described in the next section.

6.6 The Prior Predictive p-Value

We now have (1) obtained the prior predictive distribution and (2) set the replication
hypothesis H0. When we confront the elements obtained in step 1 and 2 with the
new data, we can obtain the prior predictive p-value in the third and final step
of this procedure. We want to compare whether the new dataset is similar to the
predicted datasets considering the replication hypothesis. To make the comparison,
we compute for each dataset the approximate likelihood ratio statistic D as presented
in Equation 6.3. The statistic D reflects how much the dataset deviates from the
replication hypothesis H0. If D = 0, there is no difference between the parameters
estimated under the unconstrained hypothesis Hu and the ones that are fitted under
the constraints of H0. In other words, if D = 0 the unconstrained parameter estimates
fit H0 perfectly.

When the new dataset and all predicted datasets have a score D, we can compare
the new observed dataset to the predicted datasets. We can compute the proportion of
predicted datasets that obtains the same, or a larger D score than the observed new
dataset. This is the prior predictive p-value (See also Equation 6.6). The smaller the
prior predictive p-value, the more extreme the new observed dataset scores with respect
to H0 as compared to predicted datasets given the original data. If the prior predictive
p-value is smaller than a preset Type I error rate α, we can reject replication of the
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original study considering H0. The prior predictive check is not aimed at ‘proving’
replication, but an indication of a replication is provided if replication cannot be
rejected while the test had sufficient statistical power. For simple statistical models
(e.g., univariate models), it can be possible to compute the statistical power to reject
replication (Zondervan-Zwijnenburg et al., 2019). Generally, it is recommended to
make use of well-powered original and new studies, where the new study is preferably
2.5 times the size of the original study (Simonsohn, 2015).

To obtain the prior predictive p-value, we make use of the function ppc.step2step3
of the Replication package. The function ppc.step2step3 first computes D for each
dataset (i.e., predicted data and observed new data), and then applies Equation 6.6,
which yields the prior predictive p-value. We provide the function with: (1) the results
of ppc.step1, (2) the new data, (3) the statistical model, (4) H0, and (5) the vector
s.i including the id values of the (pooled) standard deviations in the summary table
produced by ppc.step1 by which the parameters of interest should be standardized.
Other lavaan or blavaan modelling commands (e.g., multiple group analysis, type of
estimator) can be added as well, but these are optional. Run ?ppc.step2step3 for all
options. The R code for the running example is:

H0 <- ".p11.>.50 & .p12.>.80 & .p11.+.p12.>.80"
step23.A <- ppc.step2step3(step1=step1.A,y.r=y.r,model=model.A,

H0=H0,s.i=s.i)

The resulting D for the new data and prior predictive p-value are requested as
follows.

step23.A$llratio.r #D in new data
step23.A$`p-value` #p-value

Figure 6.2 shows a histogram of D for ys. A thick black line at D = 0 on the x-axis
indicates that more than 2,500 of the 5,000 predicted datasets perfectly matched H0.
Larger values of D also occur in the predicted data. This may seem surprising to some,
because the predictive distribution was based on the original study that also produced
H0. This deviance between H0 and the predicted data can occur as a result of random
variation.

For Achterberg et al. (2018) D = 0, as is also illustrated by the red vertical line in
Figure 6.2. This means that the new data perfectly follows the replication hypothesis
H0. As a result, the prior predictive p-value is 1.000. Thus, all predicted datasets have
the same or a more extreme deviation from H0. The prior predictive p-value shows
that we cannot reject replication of the original study results. Since D = 0 and the
prior predictive p = 1, we can even state that the new study replicates the replication
hypothesis generated by Achterberg et al. (2017).

Generally, the prior predictive p-value tells us how extreme the new study scores
compared to what we would expect based on the original findings, considering H0.
If p > .05, but < 1, the result is not perfectly in line with the original findings and
we can only conclude that we cannot reject replication of the original study. If the
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Fig. 6.2: Histogram of predicted D for the replication of Achterberg et al. (2017) with
the observed D for Achterberg et al. (2018) indicated by the red line

original study results concerned large effects based on a sufficient sample size and if
the new study sample size was sufficient as well, we did not prove replication, but
replication is a likely interpretation of the results. If the original study results were
vague and sample sizes were insufficient, we should consider a lack of power as an
alternative explanation for not rejecting replication of the original study results.

In sum, (1) we have predicted datasets given the original findings, and (2) using
the replication hypothesis (3) we have compared the new observed dataset to the
predicted datasets by their deviance from the replication hypothesis. The result is
a prior predictive p-value that indicates whether we can reject replication of the
original study considering its relevant findings. We have accomplished this using only
two functions of the Replication R-package: ppc.step1 and ppc.step2step3. The
steps to compute the prior predictive p-value can be applied to other studies, models,
datasets, and hypotheses as well. The next section illustrates how replication can be
tested in three steps for a multilevel latent growth model with predictors.

6.7 An Example of a Multilevel Longitudinal Growth Curve
Model

Bakker et al. (2013) examined traumatic stress reactions in couples after a burn event
to their preschool child (0-4 years). The couples, representing 190 children, reported
four times in 18 months on their intrusion and avoidance symptoms. We will focus on
the intrusion results. Bakker et al. (2013) used a three-level model (time in parents in
couples) to analyze the development and predictors of intrusion. The model including
the cross-level regressions is depicted in Figure 6.3. The top of Figure 6.3 shows the
time level with three repeated measurements of intrusion: int0, int3, int12 and int18.
The model contains three latent growth factors: (1) i, the intercept of intrusion at the
first measurement, (2) s, the linear growth rate per month at the first measurement,
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and (3) q, the quadratic factor. The second level is the parent level with predictors
measured in fathers and mothers: anger, guilt, parent gender, and feelings of threat.
The third level is the couple level with predictors for the parent couple: gender of the
child, age of the child, burn size, and location of the burn event (i.e., inside or outside
the home). The intercept of intrusion is regressed on all parent and couple predictors
(i.e., βanger, βguilt, βgenderP, βthreat). The linear slope of intrusion is regressed on anger
and parent gender (i.e., βanger*s, βgenderP*s). Egberts et al. (2017) repeated the study
of Bakker et al. (2013) with parents of school-aged children (8-18 years) that were
subject to a burn event. That is, in their study 111 mothers and 91 fathers of 108
children reported four times in 18 months on their intrusion and symptoms.

Fig. 6.3: Multilevel model as evaluated in Bakker et al. 2013.

6.7.1 The Prior Predictive Distribution

First, the multilevel model was rewritten at the first level for wide format data (see
Supplementary R-code at https://osf.io/as7kz), because blavaan does not include
a cluster function yet. Because the multilevel longitudinal growth-curve model is rela-
tively complex, we first conducted a preliminary analysis with automatic convergence
settings, which indicated that about 25,000 post burn-in iterations would result in

https://osf.io/as7kz
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convergence for all parameters. Hence, we set the number of post burn-in iterations in
the ppc.step1 function to 25,000 to obtain the predicted data.

step1.B.M <- ppc.step1(y.o=y.o,model=model.B,n.r=n.r,
nchains=3,nsample=25000)

As a result of running ppc.step1, we obtained trace plots for each parameter,
a parameter table with information about the parameters such as estimates, and
(the default number of) 5,000 predicted datasets that represent future data given the
original findings. The trace plots showed acceptable convergence. Hence, the next step
was to specify the replication hypothesis of interest H0 with which we could compare
the predicted datasets to the observed new dataset.

6.7.2 The Replication Hypothesis H0

With respect to intrusion, Bakker et al. (2013) drew conclusions about the eight bold
and colored parameters in Figure 6.3:

“Mothers had higher scores [positive βgenderP] ... A general decline in
intrusion was observed in all parents [negative latent factor s], but a small
quadratic term for time indicated that this decrease in symptoms was not
strictly linear [small positive latent factor q] ... Parents within couples did not
have the same course of symptoms over time (“random slopes”). For symptoms
of intrusion, the difference between mothers and fathers became smaller over
time [negative βgenderP*s].” (p. 1079)

“For intrusion, the final model with explanatory variables showed that
apart from parent gender, perceived threat to the child’s life [positive βthreat]...
and parental feelings of guilt [positive βguilt]... affected the level of symptoms
throughout the entire study period ... For early feelings of anger, the results
showed an initial influence on symptoms of intrusion [positive βanger]..., but
this influence diminished as time passed [negative βanger*s]...” (p. 1080)

All mentioned findings were observed with one-sided p-values smaller than .01.
From the parameter table obtained with ppc.step1, we derived the replication

parameter estimates for H0. In translating these findings into a replication hypothesis,
an expert on the subject judged whether the same estimates for parameters in H0 could
be expected for the older children in the new study. According to the expert, intercepts
for predictors may change, but the difference in child age is not a reason to expect
different values for the latent time variables and regression parameters of interest. Hence,
H0: s < −0.63, q > 0.02, βgenderP > 4.84, βguilt > 0.56, βanger > 1.30, βthreat > 2.07,
βgenderP*s < −0.08, βanger*s < −0.06. Again, we identify the plables and include
them in an object H0 (see Supplementary Materials at https://osf.io/as7kz for
an automatized procedure).

https://osf.io/as7kz
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6.7.3 The Prior Predictive p-Value

With the prior predictive p-value we can check the agreement with H0 in Egberts et al.
(2017). If we separately analyze Egberts et al. (2017). We obtain the following results:
s = −0.56, q = 0.02, βgenderP = 5.41, βguilt = 1.19, βanger = 0.58, βthreat = 1.39,
βgenderP*s = −0.18, βanger*s = 0.00. We can see that the results are not perfectly in
line with H0, but the question is: do they deviate more than what we would expect
based on random variation?

To answer this question, we provide the pcc.step2step3 with (1) the results of
step 1 stored in step1.B.M, (2) the new data y.r, and (3) the replication hypothesis
stored in H0.

step23.B <- ppc.step2step3(step1=step1.B.M,y.r=y.r,
model=model.B,H0=H0)

For Egberts et al. (2017) D = 10.89, and the prior predictive p-value is 0.013 (See
also Figure 6.4). The new data by Egberts et al. (2017) scored in the extreme 1.3% of
the predicted data with respect to the replication hypothesis. Hence, we reject the
replication of H0 by Egberts et al. (2017).
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Fig. 6.4: Histogram of predicted D for the replication of Bakker et al. (2013) with the
observed D for Egberts et al. (2017) indicated by the red line.

All in all, the example above showed how replication for a structural equation
model can be tested in a few steps using the Replication package to compute the
prior predictive p-value. So far, however, we used an original and new dataset in which
missing values were imputed once, which is not proper for inferences. Since missing
data is common in social science research, we comment on this topic in the next section
and suggest how it could be dealt with. Our proposal, however, is not ideal yet for
missing data in yr.
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6.7.4 Missing Data

Missing data in yo can be resolved by applying multiple imputation on yo. A basic
example of imputation with mice (Van Buuren and Groothuis-Oudshoorn, 2011) on
the wide format data is shown below:

library(mice)
#choose predictor variables; exclude ID and collinear gender variable
pred.1 <- quickpred(p1.w,exclude=c("fam","ParentG.1"))

#impute the data
imp.B <- mice(p1.w, maxit=25, m=10, predictorMatrix=pred.1)
#evaluate the imputation
imp.B$loggedEvents; plot(imp.B)

Here, imp.B is the object with imputed datasets. Subsequently, we can compute the
posterior distribution for each imputed dataset and combine those posterior samples
(Gelman et al., 2013, p. 451-452). The function ppc.step1 will do this automatically
if an object imputed with mice is included. The input for the y.o argument is then
ignored. Hence, our input with missing data in y.o is:

step1.B.M_mis <- ppc.step1(y.o=y.o,model=Model.B.mis,n.r=n.r,
imp=imp.B,nsample=25000)

where Model.B.mis is the statistical model of Bakker et al. (2013) without the
quadratic factor to facilitate estimation in this example.

Missing data in yr poses a problem for the prior predictive p-value, because the
predicted data needs to be comparable to the new data, and thus needs to have
the same sample size and no missing data. To circumvent this issue, we propose to
compare complete datasets by applying multiple imputation on yr and comparing all
M complete datasets to the predicted data f(ys), which has the same sample size.
As a result, we obtain M prior predictive p-values. If all prior predictive p-values are
non-significant while the sample size in the new study was sufficient, it appears that
the new study does not deviate more from H0 than we would expect given the original
results. The more prior predictive p-values are significant, the more doubt we have
that the new study replicates the original results as captured by H0.

In the Replication package, we can obtain the prior predictive p-values for
replicated data in two steps. First, we run the pcc.step2step3 as usual, but now with
y.r = NULL. Consequently, the function will only evaluate the replication hypothesis
H0 for the predicted datasets ys and not for yr.

step23.B.M <- ppc.step2step3(step1=step1.B.M_mis,y.r=NULL,
model=Model.B.mis,H0=H0)

Second, we evaluate H0 for each imputed new dataset to obtain a distribution of D
scores and prior predictive p-values. To obtain D for each imputed dataset, we use the
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function llratio.imp. We provide llratio.imp with the results of ppc.step2step3,
the imputed mice object, and the model.

robust <- llratio.imp(step2step3=step23.B.M,imp=imp.E,model=Model.B.mis)

Figure 6.5 shows the resulting histogram with D for the predicted datasets. Each
red line in the histogram shows a score D for an imputed new dataset. Most D values
for imputed new data occur in the second half of D-scores for the predicted data.
Associated to each D for the imputed datasets is a prior predictive p-value. The
distribution of prior predictive p-values is shown in Figure 6.6.
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Fig. 6.5: Histogram of D for the predicted data with scores for the imputed new
datasets in red.
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Fig. 6.6: Histogram of prior predictive p-values for the imputed datasets.
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The computed p-values over the imputations vary from 0.00 to 0.63. 59.0 percent
of the prior predictive p-values was smaller than .05. Significant p-values indicate that
the new study shows extreme misfit considering H0 relative to the predicted data given
the original study. The proportion of non-significant p-values must be interpreted in
light of the fact that the new study did not guarantee high statistical power, as the
sample was not particularly large and even smaller than in the original study.

All in all, the outcomes make us skeptical about the replication of the most
important findings of Bakker et al. (2013) as captured in H0.

6.8 Dicussion and Conclusion

The Replication R-package enables researchers to test replication for models ranging
from simple regressions and ANOVAs up to multilevel structural equation models with
missing data. For simple situations, researchers only need to define the model and the
replication hypothesis, and run two functions from the Replication package. In more
complex situations, the Replication package provides additional lavaan modeling
options, and it can handle imputed data.

A future direction for replication testing with the prior predictive p-value would
be to delve deeper into the issue of missing data in yr. For example, it would be
preferable if we could arrive at one (pooled) prior predictive p-value. Furthermore,
power and required sample sizes for the prior predictive p-value can be calculated once
we can define the alternative (non-replication) population (Zondervan-Zwijnenburg
et al., 2019). In structural equation models, simply setting all H0 parameters at 0
in Ha however, may result in non-positive definite variance-covariance matrices and
non-convergence.

With respect to the replication hypothesis, it may occur that multiple definitions
of H0 seem defensible. In that case researchers could evaluate multiple replication
hypotheses and show to what degree the new study fails to replicate the findings
in the original study. If researchers were to evaluate multiple specifications for H0,
it is essential that they determine the operationalizations of H0 before running the
analyses, and that they report all investigated H0 and associated results. Changing H0
or reporting a selection of the results would be unethical and undermine the goal of
replication studies altogether. Thus, we urge scientists to be open about their decisions
and investigations.

The current paper demonstrated the use of the Replication package with two
examples. The Supplementary Material provides data and R-scripts to follow each
step in this paper. This facilitates readers who want to test the replication of study
claims, including and beyond effect sizes, for any structural equation model.
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B.1 Syntax (b)lavaan Model for Achterberg et al. (2017)

model.A <- '
#latent growth model
i =~ 1*positive + 1*neutral + 1*negative #latent factor intercept
s1 =~ 0*positive + 1*neutral + 1*negative #latent factor slope 1
s2 =~ 0*positive + 0*neutral + 1*negative #latent factor slope 2

i ~ 1 #baseline / first mean
s1 ~ (s1)*1 #dif 12. mean 2 = i+s1
s2 ~ (s2)*1 #dif 23. mean 3 = i+s1+s2

#residual variances repeated measures
positive ~~ (rt1)*positive
neutral ~~ (rt2)*neutral
negative ~~ (rt3)*negative

#item means @0
positive ~0*1
neutral ~0*1
negative ~0*1

#(co)variances latent factors @0
i ~~ 0*i #fixed intercept factor
s1 ~~ 0*s1 #fixed s1 factor
s2 ~~ 0*s2 #fixed s2 factor
i ~~ 0*s1 + 0*s2 #no covariance i & s1, i & s2
s1 ~~ 0*s2 #no covariance s1 & s2

#pooled standard deviations
s12 := sqrt((rt1+rt2)/2)
s23 := sqrt((rt2+rt3)/2)
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s13 := sqrt((rt1+rt3)/2)

#Cohens d effect sizes
d12 := s1 /s12
d23 := s2 /s23
d13 := (s1+s2) /s13
'

In the model syntax above, the operator =~ defines a latent factor, the operator ~1
indicates a regression on one, which is used for means and intercepts. The operator
~~ is used for (co)variances between the variable at the left hand side and the right
hand side. Before a ∗, labels and fixed values can be inserted. The pooled standard
deviations and the effect sizes are included in the model as defined parameters with
the operator :=, which means that they are not estimated, but they are derived from
other estimated parameters.
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B.2 Prior Specifications Bayesian Analyses

The following prior has been used in the analysis of Achterberg et al. (2017) for the
latent factors α.

α ∼ N(0.00, 0.01),
which denotes a normal distribution with a mean of 0 and a precision (i.e., the inverse
of the variance) of 0.01. A visualization of this default blavaan prior is depicted in
Figure B.1.
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Fig. B.1: Prior distribution for α.

The following prior has been used in the analysis of Achterberg et al. (2017) for
the residual variances Θ.

Θ ∼ Γ (1.00, 0.50),
which denotes a gamma distribution with a shape parameter of 1.00, and a rate
(i.e., the inverse of the scale) of 0.50. A visualization of this default blavaan prior is
depicted in Figure B.2.

The default priors for all model parameters in blavaan can be consulted with:

dpriors()

## nu alpha lambda beta
## "dnorm(0,1e-3)" "dnorm(0,1e-2)" "dnorm(0,1e-2)" "dnorm(0,1e-2)"
## itheta ipsi rho ibpsi
## "dgamma(1,.5)" "dgamma(1,.5)" "dbeta(1,1)" "dwish(iden,3)"
## tau delta
## "dnorm(0,.1)" "dgamma(1,.5)"

These are also the priors used to evaluate the replication of Bakker et al. (2013).
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Fig. B.2: Prior distribution for Θ.
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7
Testing Replication with Small Samples:

Applications to ANOVA

Summary. Findings based on small samples can offer important insights, but the original
small sample findings should be replicated before strong conclusions can be drawn. This
chapter describes some of the difficulties that arise when attempting to replicate findings from
small sample research. We present four common replication research questions: 1) whether
the new effect size is similar to the original effect size; 2) whether the new effect size differs
from the original effect size; 3) whether the conclusions based on new results differ from the
original conclusions; and 4) what the effect size is in the population. Appropriate evaluation
methods are discussed for each of these research questions: the replication Bayes factors,
confidence intervals, methods based on prediction intervals, and bias-corrected meta-analysis.
Each method is illustrated for the replication of an ANOVA and associated post-hoc t-tests.
Annotated R-code for all analyses is provided with the chapter.

7.1 Introduction

Concerns about the replicability of studies were expressed as early as in 1979 by
Rosenthal, who believed that future insights would solve this problem. The field of
psychological science, however, is still struggling to establish replicability, as was clearly
shown with the Reproducibility Project Psychology (RPP; Open Science Collaboration,
2015). Increased awareness of the fuzziness of results obtained using small samples is
an important step towards improving this situation (Lindsay, 2015). Results obtained

This chapter is accepted as Zondervan-Zwijnenburg, M.A.J., & Rijshouwer, C.D.N. Testing
Replication with Small Samples: Applications to ANOVA. In: R. van de Schoot, M. Mioc̆ević
(Eds.), Small Sample Size Solutions: A guide for applied researchers and practitioners.
Routledge.
Author contributions: MZ and DR were involved in the initial research design. DR drafted
the initial chapter evaluating only research question 3. MZ wrote the final chapter evaluating
four research questions with different methods. MZ conducted the analyses. DR provided
additional feedback.
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with smaller samples are less likely to be replicated than those obtained with larger
samples (Cohen, 1962).

One of the difficulties in replicating small sample research is that small samples
are particularly sensitive to ‘researcher degrees of freedom’: decisions that researchers
make in the design and analysis of the data (Simmons et al., 2011). For example,
researchers decide to combine categories, exclude scores, add comparisons, add covari-
ates, transform measures, etc. Unfortunately, modifications are more common if results
do not support the hypothesis. For example, the impact of an extreme score will more
often be detected and adjusted if it causes a non-significant result as compared to a
significant result. With small samples, these decisions can easily affect the significance
of results, leading to inflated false positive rates (Simmons et al., 2011).

Another issue is publication bias: studies with statistically significant results are
published more often than studies with non-significant results. Small sample studies
are often underpowered, leading to non-significant results and hence a reduced chance
to be published. On the other hand, small studies that do find significant effects appear
impressive and are more likely to be published.

Thus, researcher degrees of freedom and publication bias can lead to overestimation
of effects and an inflated false positive rate in the literature (Simmons et al., 2011).
Small sample findings therefore can easily be spurious, meaning that their replication
is of great importance.

Different replication research questions require different methods. Here, we distin-
guish four main research questions that can be investigated if a new study is conducted
to replicate an original study:

1. Is the new effect size similar to the original effect size?
2. Is the new effect size different from the original effect size?
3. Are the conclusions based on new results different from the original conclusions?
4. What is the effect size in the population?

Note that questions one and two differ in where the burden of proof lies. Question one
looks to provide support for the equality of effect sizes, whereas question two is aimed
at falsifying the claim of equality of effect sizes in favor of a conclusion that the effect
size was not replicated.

For all four replication research questions we recommend statistical methods and
apply them to an empirical example. Note that Anderson and Maxwell (2016) also
documented replication research questions and associated methods, although not
specifically for small samples. In the current chapter, we adopt several suggestions
from Anderson and Maxwell (2016) and add more recent methods. R-code (R Core
Team, 2017) for reproducing all chapter results is provided as Supplementary Material
at https://osf.io/x3ua2. We demonstrate the four replication research methods for
the replication of Henderson et al. (2008) by Lane and Gazerian (2016). First, we
introduce the original study by Henderson et al. (2008) and its replication by Lane
and Gazerian (2016). This is followed by a discussion of the four replication research
questions and their associated methods.

https://osf.io/x3ua2
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7.1.1 Original Study and its Replication

Henderson et al. (2008) conducted a series of experiments showing that people who
planned the implementation of a chosen goal (i.e., people with an “implemental
mind-set”) have stronger attitudes, even towards topics unrelated to their actions.
Experiment 5 is the one that was replicated by Lane and Gazerian (2016). It is designed
to demonstrate that a focus on information that supports the previously made decision
is the reason that attitude strength increases with an implemental mind-set. The
experiment included three conditions with 46 participants in total. The first condition
was a neutral condition in which participants described things they do on a typical
day. The second condition was an implemental one-sided focus condition. Participants
in this condition chose a romantic topic to write about and wrote down three reasons
for that choice. The third condition was the implemental two-sided focus condition
in which participants made their choice and wrote down three reasons for and three
reasons against this choice. Afterwards, participants in all conditions answered three
questions rating their attitude ambivalence with respect to the issue of making public
a list with names of convicted sex offenders (e.g., “I have strong mixed emotions both
for and against making the list of convicted sex offenders available to the general
public rather than just the police”).

The descriptive statistics of the data for the experiment by Henderson et al. (2008)
are provided in Table 7.1. The effect of the conditions on attitude ambivalence was
significant as Henderson et al. (2008) report: F (2, 43) = 3.36, p = .044, η2 = 0.13,
ω2 = 0.09, r = 0.26. We have added the effect size ω2, because it is less biased
than η2 for small samples (Okada, 2013). Furthermore, we also computed the effect
size r as used in the RPP as an additional effect size measure (see Appendix 3 at
https://osf.io/z7aux). Assuming that all predictors (i.e., the dummy condition
variables) contributed equally to the explained variance, r2 is the explained variance
per predictor, and r is the correlation coefficient per predictor.

Post-hoc comparisons revealed that the implemental mind-set one-sided group
demonstrated significantly lower amounts of ambivalence compared to the implemental
mind-set two-sided group, t(28) = 2.45, p = .021, Cohen’s d = .93, Hedges’ g = .50.
For the t-test, we added Hedges’ g to correct for an upwards bias that Cohen’s d shows
with small samples. Hedges’ g is obtained by multiplying Cohen’s d by the correction
factor (1− 3

4df−1 ) (Hedges, 1981). The mean of the neutral mind-set group was in the
middle, but it was not significantly higher or lower than the means of other conditions
(see descriptive statistics in Table 7.1). Henderson et al. (2008) write: “Critically, the
findings showed that it was the evaluatively one-sided analysis of information, rather
than simply the act of deciding itself, that fostered a spillover of decreased ambivalence
... ” (p. 406-407).

Lane and Gazerian (2016) replicated the experiment with 70 participants, but
found no significant effect of condition on ambivalence, F (2, 67) = 1.70, p = .191,
η2 = 0.05, ω2 = .02, r = 0.16 (see also the descriptive statistics in Table 7.1). The
post-hoc difference test between the one- and two-sided implemental mind-set groups
was not significant, t(44) = 1.24, p = .222, Cohen’s d = .36, Hedges’ g = .25. Based on

https://osf.io/z7aux
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the lack of significance in the new study, Lane and Gazerian conclude that the effect
may not replicate.

7.2 Four Replication Methods

Evaluating the significance (and direction) of the effect in the new study and using
it as a measure for replication, as was a main method of Lane and Gazerian (2016),
is called ‘vote-counting’. Vote-counting, however, does not take into account the
magnitude of the differences between effect-sizes (Asendorpf et al., 2013; Simonsohn,
2015); it is not a statistical test of replication (Anderson and Maxwell, 2016; Verhagen
and Wagenmakers, 2014); and it leads to misleading conclusions in underpowered
replication studies (Asendorpf et al., 2013; Simonsohn, 2015). Thus, vote-counting
is a poor method to assess replication. In the following, we discuss four alternative
replication research questions and methods.

Neutral One-sided implemental Two-sided implemental
n M (SD) n M (SD) n M (SD)

Original 16 1.23 (1.64) 15 0.16 (1.85) 15 1.82 (1.86)
New 24 -0.38 (1.44) 23 -0.14 (1.66) 23 0.39 (1.25)

Table 7.1: Descriptive Statistics for Confirmatory Information Processing from the
Original Study: Henderson et al. (2008), and the New Study: Lane and Gazerian
(2016)

7.2.1 Question 1. Is the New Effect Size Similar to the Original Effect
Size?

A frequentist approach to this replication research question is the equivalence test (e.g.,
Walker and Nowacki, 2011). This test requires the researcher to specify a region of
equivalence for the difference between the original and new effect size. If the confidence
interval of the difference between effects falls entirely within this region, the effect sizes
are considered equivalent. However, it is difficult to set a region of equivalence that is
reasonably limited while at the same time the confidence interval for the difference
between effects has a chance to entirely fit within the interval. Therefore, we do not
elaborate on the equivalence test and focus instead on Bayesian approaches.

To evaluate whether the new effect size is similar to the original effect size, we can
compute a Bayes factor (BF; Jeffreys, 1961). A BF expresses the shift in belief, relative
to our prior belief, after observing the data for two competing hypotheses. A BF of 1
is undecided. BFs smaller than one indicate preference for the null hypothesis, whereas
BFs larger than one favor the alternative hypothesis. The two competing hypotheses in
the BF can be operationalized in many ways, but in the replication setting, one of the



7th

7.2 Four Replication Methods 125

evaluated hypotheses is often the null effect (i.e., the effect size is zero). To evaluate
the current research question, a proper alternative hypothesis is that the effect in the
new study is similar to the effect in the original study Harms (2018a); Ly et al. (2018);
Verhagen and Wagenmakers (2014). In this case, the BF evaluates whether the new
study is closer to a null effect, or closer to the original effect, where the original effect
forms the prior distribution in the BF for the new effect. Verhagen and Wagenmakers
(2014) developed this BF for the t-test. Harms (2018a) extended the Replication BF
to the ANOVA F -test and developed the ReplicationBF R-package (Harms, 2018b)
to compute it based on the sample sizes and test statistics of the original and new
study. For the ANOVA by Henderson et al. (2008) replicated by Lane and Gazerian
(2016), we obtain a Replication BF of 0.42, which means that the evidence for the
null hypothesis of no effect is 2.40 (i.e., 1 / 0.42) times stronger than the evidence
for the alternative hypothesis that the effect is similar to that in the original study.
See Figure 7.1 for a visualization by the ReplicationBF package. The R-package also
includes the Replication BF for t-tests as proposed by Verhagen and Wagenmakers
(2014). For the post-hoc t-test we find a Replication BF of 0.722, which is again in
favor of a null effect. Thus, the Replication BF does not support replication of the
omnibus ANOVA effect, nor does it support the replication of the post-hoc result that
the one-sided mind-set group scores lower on ambivalence than the two-sided mind-set
group.
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Fig. 7.1: The Replication BF by Harms (2018b). The original study is the prior for
the effect size and the replication study is the posterior based on that prior and the
new study. The ratio of the two distributions at 0 on the x-axis is the Replication BF.

Ly et al. (2018) provided a simple calculation to obtain the Replication BF by
Verhagen and Wagenmakers (2014) for all models for which a BF can be obtained:

We report BFs up to two decimal places, but use all available information for calculations
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Evidence Updating (EU) Replication BF = BF combined data
BF original data . This calculation assumes,

however, that the data are exchangeable (see Chapter 2 for a discussion on exchange-
ability). If the original and new study are not based on the same population, the
combined data may demonstrate artificially inflated variances due to different means
and standard deviations. To minimize the impact of non-exchangeable datasets, Ly
et al. (2018) suggest to transform the data. Here, the grand mean in Henderson et al.
(2008) is actually 1.03 points higher than the grand mean in Lane and Gazerian (2016).
To address this issue, we converted the responses to z-scores.

To compute the BFs for the combined and original data, we can use the point-and-
click software JASP (JASP Team, 2018) or the BayesFactor package (Morey, 2018) in
R. For both software packages, the BF for the combined data is 1.50, and the BF for
the original data is 1.59. Hence, the EU Replication BF = 1.50 / 1.59 = 0.94, which
favors the ANOVA null hypothesis that the effect is zero. For the post-hoc analysis
with the alternative hypothesis that the one-sided mind-set group scores lower than
the two-sided mind-set group, the BF for the combined data is 6.66 (see Figure 7.2 for
the accompanying JASP plot), and the BF for the original data is 5.809. Hence, the
EU Replication BF = 6.66 / 5.81 = 1.15 for the replication of the original effect. Thus,
the EU Replication BF is ambiguous about the replication of the omnibus ANOVA
effect (i.e., BF = 0.94), nor does it provide strong support for the replication of the
post-hoc result.

Fig. 7.2: BF with default prior settings in the combined data for the one-sided t-test.
The ratio of the two distributions at 0 on the x-axis is the BF.
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Note that the BFs according to the method presented in Ly et al. (2018) are higher
than those calculated by the ReplicationBF package by Harms (2018b), even though
both are extensions of Verhagen and Wagenmakers (2014). Harms (2018a) and Ly
et al. (2018) discuss several differences between both approaches: (1) both methods
use different priors (i.e., uniform in ReplicationBF R-package, Cauchy in JASP and
the BayesFactor R-package, (2) the EU Replication BF assumes exchangeability to
compute the BF for the combined data, and (3) for ANOVA models the BF computed
in the ReplicationBF package is based on the sample size and test statistics, whereas
JASP and the BayesFactor package use a more elaborate model that involves the full
dataset(s). JASP currently also has a Summary Statistics module for t-tests, regression
analyses and analyses of frequencies. Whenever possible, we recommend applying both
methods to obtain a more robust evaluation of replication.

7.2.2 Question 2. Is the New Effect Size Different from the Original
Effect Size?

To test whether the new effect size is different from the effect size in the original
study, we would preferably compute a confidence interval for the difference in effect
sizes. The literature does not provide such an interval for η2 or ω2. However, with an
iterative procedure based on descriptive statistics we can obtain separate confidence
intervals for ω2 in the original and new study (Steiger, 2004). Let us denote the original
study with subscript o, and the new study with subscript n. For the original study
ω2
o = .09, 95% CI [.00, .30] (see Supplementary Materials for all calculations). For

the new study ω2
n = .02, 95% CI [.00, .22]. With these confidence intervals, we can

calculate a confidence interval for the difference between both effect sizes, ∆ω2 by
applying the modified asymmetric method introduced by Zou (2007) for correlations
and squared correlations. This method takes into account that some effect sizes have
asymmetric distributions or cannot take on negative values (such as ω2). ∆ω2 = .07,
95% CI [−.15, .29]. Since zero is in the confidence interval of the difference between
the effect sizes, we do not reject the hypothesis that the effect sizes are equal, and
thus, we retain the hypothesis that the new effect replicates the original one.

For the post-hoc difference between the one-sided and two-sided implemental con-
ditions we can compute the 95% confidence interval for standardized mean differences
(i.e., Cohen’s do = .93 and Cohen’s dn = .36) as given in Bonett (2009) and included
in the Supplementary Materials. The difference between Cohen’s d for both studies is
0.57, 95% CI [−.0.96, 2.10]. Since zero lies in the confidence interval, we do not reject
replication of the original effect size.

Alternatively, Patil et al. (2016) describe how non-replication of an effect size
can be tested with a prediction interval. A 95% prediction interval aims to include
the (effect size) estimate in the next study for 95% of the replications. Patil et al.
(2016) (see Supplementary Materials) apply this method on r as calculated by the
RPP. Following their methods, we find that the prediction interval for ro = .26 ranges
from -0.12 to 0.57. The estimate for the new study, rn = 0.16, lies within the interval
of estimates that are expected given replication (i.e., -0.12 to 0.57). Hence, we do
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not reject replication of the original effect size. Note that Patil et al. (2016) apply
their method on r, which is considered problematic when r is based on more than
two groups (see, for example, Appendix 3 at https://osf.io/z7aux). The post-hoc
t-test value of ro is .42, with a prediction interval ranging from −0.03 to 0.73. For the
new study, rn = .18. Again, the correlation estimate for the new study lies within the
prediction interval, and we do not reject the hypothesis that the original effect has
been replicated.

The confidence intervals for the difference between effect sizes and the prediction
intervals in this example can be considered to be quite wide. If the study results are
uncertain (i.e., based on small samples), the associated confidence and prediction
intervals will less often reject replication of the original effect size. However, especially
with small studies, a failure to reject replication does not necessarily imply replication,
but rather a lack of power, which suggests that the above methods may be inadequate
for small samples.

7.2.3 Question 3. Are the Conclusions based on New Results Different
from the Original Conclusions?

In contrast to the first two replication research questions which concerned effect
sizes, the current question concerns conclusions. The prior predictive p-value can be
used to answer this question (Box, 1980; Zondervan-Zwijnenburg et al., 2019). The
calculation of the prior predictive p-value starts with the simulation of datasets from
the predictive distribution (with the sample size used in the new study) that are to be
expected, given the original results. Subsequently, the new observed data from the
replication attempt are compared to the predicted data with respect to a replication
hypothesis. The replication hypothesis includes the conclusions of the original study
in an informative hypothesis (Hoijtink, 2012) This hypothesis can include the ordering
of parameters (e.g., µ1 > µ2), the sign of parameters (e.g., µ1 > 0, µ2 < 0), or the
exact value of parameters (e.g., µ1 = 3, µ2 = −2). Any combination of constraints is
possible. The deviation from the hypothesis for each of the predicted datasets and for
the new dataset is expressed in the statistic that we call F̄ . With α = .05, replication
of the study’s conclusions is rejected if the misfit with the replication hypothesis in
the new study is equal to or higher than in the extreme 5% of the predicted data.
All computations can be conducted in an online interactive application presented at
osf.io/6h8x3 or with the ANOVAreplication R-package (Zondervan-Zwijnenburg,
2018).

The results and conclusion of Henderson et al. (2008) lead to the following
replication hypothesis: µOne-sided implemental < (µTwo-sided implemental, µNeutral), Cohen’s
dOne-sided implemental,Two-sided implemental > .8. If we run the test, we find that the prior
predictive p-value = .130. Hence, we do not reject replication of the original study’s con-
clusions. Figure 7.3 shows the statistic F̄ for each of the predicted datasets and the repli-
cation by Lane and Gazerian (2016). Note that we do not have to run a post-hoc analysis
with this method, because the conclusion for the post-hoc contrast was incorporated in
the replication hypothesis with “Cohen’s dOne-sided implemental,Two-sided implemental > .8”.

https://osf.io/z7aux
osf.io/6h8x3
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For the prior predictive p-value, an original study with large standard errors (e.g., due
to a small sample) leads to a wide variety of predicted datasets, thus making it hard
to reject replication of the original study conclusions. With the ANOVAreplication
R-package we can calculate the power to reject replication when all means would be
equal in the new study. Here, the statistical power was only .57. The sample size in
the new study also affects power to reject replication of the original study conclusions.
When we calculate the required sample size to obtain sufficient power, we find that
the statistical power stagnates around .63, even for samples of 200 per group, due to
large standard errors in the original study.
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Fig. 7.3: Prior predictive p-value. The histogram concerns F̄ -scores for each of the
10,000 predicted datasets with respect to the replication hypothesis. The thick black
line represents the 5,805 predicted datasets that had an F̄ -score of exactly 0 and were
perfectly in line with the replication hypothesis. The red line indicates the F̄ -score
of 2.20 for the new study. The F̄ -score for the new data is positioned in the extreme
13.0% of the predicted data (prior predictive p = .130).

7.2.4 Question 4. What Is the Effect Size in the Population?

At the end of the day, most researchers are concerned with the effect in the population.
To determine the population effect based on an original and new study, numerous
meta-analytic procedures have been proposed. For close replications, the fixed-effect
meta-analysis can be used, which assumes that there is one underlying population from
which both studies are random samples. Consequently, there is only one underlying true
effect size. However, the standard fixed-effect meta-analysis does not take publication
bias into account. As a result, standard fixed-effect meta-analyses overestimate effect
sizes.
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The frequentist hybrid meta-analysis (Van Aert and Van Assen, 2017b) and
the Bayesian snapshot hybrid method (Van Aert and Van Assen, 2017a) are two
meta-analytic methods developed for situations with a single replication effort that
take into account the significance of the original study (which could be caused by
publication bias). Both methods are part of the puniform R-package (Van Aert, 2018),
and available as online interactive applications. The frequentist hybrid meta-analysis
results in a corrected meta-analytic effect size and its associated confidence interval and
p-value. The output also includes the results of a standard fixed-effect meta-analysis
for comparison. The Bayesian snapshot hybrid method quantifies the relative support,
given the original and replication study, for four effect size categories: zero, small,
medium, and large. Currently, both methods can be used for correlations and t-tests.
However, the correlation for the original ANOVA as computed by the RPP cannot be
used for the meta-analytic methods, because its standard error cannot be computed
for more than two groups.

For the post-hoc t-test results of Henderson et al. (2008) and Lane and Gazerian
(2016), the bias-corrected Hedges’ g is .37, 95% CI [−.48, .94], p = .232. Thus, we
cannot reject the hypothesis that the effect in the population is zero. The standard
(uncorrected) fixed-effect meta-analytic estimate was .60, 95% CI [0.12,1.07], p=.014.
Whereas the fixed-effect meta-analytic effect sizes was significant at α = .05, the
hybrid meta-analysis effect size is lower and has a wider 95% confidence interval. The
snapshot hybrid method with equal prior probabilities for the four effect size categories
indicated that a small effect size received the highest support (37.8%), followed by no
effect size (30.2%), a medium effect size (25.5%), and a large effect size (6.6%).

Besides meta-analyses that take significance of the original study into account, we
can also calculate the Bayes factor for an effect versus no effect, based on the scaled
combined data using JASP. The Bayes factor in favor of an ANOVA effect is 1.50. The
Bayes factor in favor of a post-hoc t-test effect is 6.66. Hence, the evidence in the
combined data is positive with respect to the existence of an effect. Note that this
combined analysis does not correct for publication bias and assumes exchangeability.
Alternatively, Etz and Vandekerckhove (2016) developed a Bayes factor for t-tests,
univariate F -tests (i.e., not more than two groups), and univariate regression analyses
that takes into account publication bias, but unfortunately this Bayes factor has only
been developed for the Matlab software package, which is mainly used by engineers,
mathematicians, and economists.

7.3 Discussion

In this chapter, we presented replication research questions and associated statistical
techniques. In the example we used, the replication BFs pointed mostly towards a
null-effect instead of a replication of the original effect; the confidence intervals around
the difference between effect sizes indicated that the difference between the original
and new study may be zero, but they had low power; the prior predictive p-value
could also not reject replication of the original study’s conclusions; and meta-analyses
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indicated that the population effect is small, anecdotal, or not significantly different
from zero.

We also discussed how the different methods perform with small samples. Bayes
factors and the Bayesian snapshot meta-analysis have the advantage over null hy-
pothesis significance testing (NHST) methods (e.g., confidence intervals and the prior
predictive p-value) that they cannot be underpowered. The evidence by the BF may
not be overwhelming, but at least it indicates the relative plausibility of one hypothesis
over the other after observing the data. NHST methods, on the other hand, often
result in non-significant findings with small samples, and it remains unclear whether
the (non)replication effect was absent, or whether the analysis was underpowered.

An advantage of the prior predictive p-value is that it allows the user to test the
replication of the original study’s conclusions summarized in a replication hypothesis.
This hypothesis can include multiple parameters, and it can convey information on
their size and ordering. In the ANOVA setting, the effect size (e.g., η2) does not
provide information about the direction of the effect. Hence, it is useful to evaluate an
informative replication hypothesis that specifies the ordering of group means.

The preferred method to test replication depends on the replication research
question at hand. Furthermore, given a replication research question, it can be insightful
to apply multiple methods to test replication (Harms, 2018a). Testing replication
yields more meaningful results with larger sample sizes, and this holds for all methods
described in this chapter. Testing replication of small sample research is challenging,
but since small samples are more susceptible to researcher degrees of freedom, it is of
utmost importance to critically evaluate small sample results with replication studies.
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Parental Age and Offspring Childhood Mental

Health: A Multi-Cohort, Population-Based
Investigation

Summary. To examine the contributions of maternal and paternal age on offspring exter-
nalizing and internalizing problems, this study analyzed problem behaviors at age 10-12 years
from four Dutch population-based cohorts (N = 32,892) by a multiple informant design.
Bayesian evidence synthesis was used to combine results across cohorts with 50% of the data
analyzed for discovery and 50% for confirmation. There was evidence of a robust negative
linear relation between parental age and externalizing problems as reported by parents.
In teacher-reports, this relation was largely explained by parental socio-economic status.
Parental age had limited to no association with internalizing problems. Thus, in this large
population-based study, either a beneficial or no effect of advanced parenthood on child
problem behavior was observed.

Since 1995, the mean maternal age at first birth has increased at a rate of 0.10
years per year in OECD countries, and in 2017 exceeded 30 years in the vast majority
of these countries (Organisation for Economic Co-operation and Development, 2017).

This chapter is published as Zondervan-Zwijnenburg, M.A.J.*, Veldkamp, S.A.M.*, Neu-
mann, A., Barzeva, S.A., Nelemans, S.A., Van Beijsterveldt, C.E.M. Branje, S., Meeus,
W.H.J., Hillegers, M.H.J., Tiemeier, H., Hoijtink, H.J.A., Oldehinkel, A.J., & Boomsma,
D.I. (2019). Parental Age and Offspring Childhood Mental Health: A Multi-Cohort,
Population-Based Investigation. Child Development. doi: 10.1111/cdev.13267
* These authors contributed equally.
Author contributions: HH, DB, and TO initiated the project. MZ and SV managed the
project. MZ, SV and HH designed the data analysis protocol, supervised its execution,
and summarized the outcomes. SV, MZ, HH, TO, and DB wrote the manuscript. SV, AN,
SBa, SN, and MZ contributed to the exploratory analysis design and analyzed data. AN
and HT contributed to Gen-R data-collection. TvB and DB, contributed to the NTR data
collection. TO contributed to the TRAILS data collection. SN, SBr, and WM contributed
to the Radar-Y data collection. All authors read, reviewed, revised, and approved the
manuscript.
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Only in Mexico was the mean age of women at childbirth lower than 28 years, and
only in eight countries was it between 28 and 30 years of age. Women’s reproductive
years generally range from about 15 to 45 years (Te Velde, 2002). Within this wide
age range some periods are generally considered more suitable to have children than
others, but which parental reproductive ages are optimal for offspring physical and
mental health has been a matter of debate ever since individuals have engaged in
active birth control. Whereas having children at an advanced age was quite common
historically, when families tended to be larger (e.g. Desjardins et al., 1994), the current
trend to delay childbearing has given rise to public health concerns.

8.0.1 Concerns Regarding Delayed Childbearing

Concerns regarding delayed childbearing are understandable, as a large number of
research reports highlight that increased maternal age at childbirth is associated with
several adverse consequences, ranging from physical problems, such as increased BMI,
blood pressure and height (Carslake et al., 2017) to psychiatric conditions, such as
autism (Lee and McGrath, 2015; Sandin et al., 2012), bipolar disorder (Menezes et al.,
2010), symptoms of depression, anxiety and stress (Tearne et al., 2016), and poor social
functioning (Weiser et al., 2008). More recently, increased paternal age at birth has also
been associated with adverse child outcomes, such as stillbirth and cleft palate (see for
a review Nybo Andersen and Urhoj, 2017). In over 40 million live births between 2007
and 2016, having an older father increased the risk of low birthweight, apgar score, and
premature birth (Khandwala et al., 2018). A study of the Danish population, which
included 2.8 million persons, found that older fathers are at risk of having offspring
with intellectual disabilities, autism spectrum disorders and schizophrenia (McGrath
et al., 2014; de Kluiver et al., 2017).

Several, not mutually exclusive, mechanisms have been proposed to explain the
increased physical and mental health risks in offspring of older parents. First, age-
related deterioration of the functioning of women’s reproductive organs, such as DNA
damage in germ cells, and worse quality of oocytes and placenta, can increase the
risk of obstetric and perinatal complications (Myrskylä and Fenelon, 2012). Second,
male germline cells undergo cell replication cycles repeatedly during aging, with de
novo point mutations accumulating over time (e.g., Jónsson et al., 2017) and the
number of de novo mutations in the newborn increasing with higher age of the father
at the time of conception (Kong et al., 2012; Francioli et al., 2015). Although weaker
than with paternal age, de novo mutations in offspring correlate with maternal age as
well (Goldmann et al., 2018; Wong et al., 2016). Third, genomic regions in the male
germline may become less methylated with increasing age (Jenkins et al., 2014) and
alter the expression of health-related genes. Fourth, age effects can be due to selection,
with older parents differing from younger ones in characteristics that are relevant for
developmental outcomes in their offspring, such as poor social skills. The influence
of selection effects can be exacerbated by assortative mating (Gratten et al., 2016).
Fifth, being the child of older parents carries the risk of having to cope with parental
frailty or losing a parent at a relatively young age (Myrskylä and Fenelon, 2012), and
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the stress evoked by these experiences may trigger health problems. Most of these
mechanisms involve consequences of biological ageing. Parenthood at an advanced age
is disadvantageous from a biological perspective; except for very young, physiologically
immature mothers, younger parents are in a better physical condition.

8.0.2 Possible Benefits of Delayed Childbearing

Whereas the effects of older parental age on children’s physical health and psychiatric
disorders tend to be predominantly negative, the effects of older parental age on mental
health problems with a stronger psychosocial component, such as externalizing and
internalizing problems, tend to be more inconsistent. An indication that the negative
consequences of high parental age may stretch beyond clinical diagnosis is provided
by Tearne et al. (2015, 2016), who found that high maternal age predicted symptoms
of depression, anxiety and stress in daughters, and by Janecka et al. (2017a) who
reported a negative association between advanced paternal age and social development.
In contrast, in several population-based studies, offspring of older parents, particularly
of older mothers, perform better at school and work, score higher on intelligence tests,
report better health and higher well-being, use fewer drugs, and have fewer behavioral
and emotional problems than offspring of younger parents (e.g., Carslake et al., 2017;
McGrath et al., 2014; Myrskylä and Fenelon, 2012; Myrskylä et al., 2017; Orlebeke
et al., 1998; Tearne et al., 2015).

While the biology of ageing seems to put older parents in an unfavorable position
with regard to their offspring’s physical and mental, the psychosocial perspective of the
effects of parental age on offspring outcomes is more nuanced. Being a child of older
parents can have substantial benefits (Lawlor et al., 2011). Older parents not only
are often in a better socioeconomic position than young parents (Bray et al., 2006),
thereby providing a more favorable environment for children, they also have greater life
experience. Furthermore, older parents display more hardiness (McMahon et al., 2007)
and tend to have fewer substance use and mental health problems (Kiernan, 1997),
hence score higher on parenting factors that promote health and development (Janecka
et al., 2017b; Kiernan, 1997). In part, positive associations of advanced parental age
could be related to selection effects. In young people, substance abuse and related
externalizing problems go together with earlier sexual activity (Crockett et al., 1996),
which increases the probability that intergenerational transmission of externalizing
problems occurs at an early parental age (Bailey et al., 2009). Like age-related parental
characteristics that may have negative effects on offspring outcomes, the influence of
such selection effects can be exacerbated by assortative mating (Gratten et al., 2016).

In sum, whereas advanced parenthood, particularly advanced paternal age, has
primarily been associated with physical health and neurodevelopmental outcomes, such
as autism and schizophrenia, advanced parenthood, particularly advanced maternal age,
rather seems to predict mental health problems with a stronger psychosocial component,
such as externalizing problems. Although it seems plausible that parental age interferes
with subclinical problems and traits underlying these conditions, comprehensive
evidence from population-based cohorts is scarce and inconsistent, and more empirical
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evidence is desirable. Moreover, prior population-based studies that used continuous
measures of mental health problems usually focused on cognitive or behavioral problems
(e.g., Carslake et al., 2017; Orlebeke et al., 1998) and, with a few exceptions that
require replication in other cohorts (Janecka et al., 2017a; Tearne et al., 2015, 2016),
rarely included internalizing problems. A final reason to extend the research conducted
thus far with the present study is the wide variety of populations, designs and outcomes
used, which makes it hard to distinguish between substantive variation in association
patterns and sample-specific artefacts. In short, there is a need for studies that
investigate both maternal and paternal age effects on continuously assessed core
dimensions of offspring mental health (including internalizing problems) and that use
robust analytical methods are suitable for the investigation of increased risk for both
young and old parenthood.

8.0.3 The Present Study

We investigated parental age effects on offspring externalizing and internalizing prob-
lems around age 10-13 years in four Dutch population-based cohorts: Generation R
(Gen-R), the Netherlands Twin Register (NTR), the Research on Adolescent Devel-
opment and Relationships-Young cohort (RADAR-Y), and the Tracking Adolescents’
Individual Lives Survey (TRAILS) (see Table 8.1). The Netherlands is characterized
by a high maternal age at birth, and relatively few teenage pregnancies. In 1950, 1.6%
of the children were born to mothers younger than 20 years of age, with a comparable
percentage (1.7%) in 1990. In 2016 this number had decreased to 0.6%. In contrast,
the percentages of women who gave birth at an age above 40 years were 8.5% in 1950,
1.5% in 1990, and 4.3% in 2016 (Centraal Bureau voor de Statistiek, 2018).

Table 8.1: General Cohort Information

Full cohort name Short name Website Birth years References (DOI)
Generation R Gen-R generationr.nl 2002-2006 10.1007/s10654-016-0224-9
Netherlands Twin Register NTR tweelingenregister.org 1986-2017 10.1017/thg.2012.118
Research on Adolescent Development
And Relationships – Young Cohort

RADAR-Y www.uu.nl/onderzoek/
radar

1990-1995 10.1111/cdev.12547

TRacking Adolescents’ Individual
Lives Survey

TRAILS trails.nl 1989-1991 10.1093/ije/dyu225

As the perception of childhood problems may differ for different informants
(Rescorla et al., 2013; Hudziak et al., 2003), we aimed to obtain a comprehensive set
of outcome measures of internalizing and externalizing problems through a multiple
informant design. The four cohorts provided reports from mothers, fathers, the chil-
dren themselves, and the children’s teachers. The addition of reports from teachers
is particularly valuable, because their reports are unlikely to be affected by parental
age-related report biases. We tested both linear and nonlinear effects, to be better able
to distinguish effects of older parenthood versus younger parenthood. We tested effects
with and without adjusting for child gender and socio-economic status. Socio-economic

generationr.nl
https://dx.doi.org/10.1007/s10654-016-0224-9
tweelingenregister.org
https://dx.doi.org/10.1017/thg.2012.118
www.uu.nl/onderzoek/radar
www.uu.nl/onderzoek/radar
https://dx.doi.org/10.1111/cdev.12547
trails.nl
https://dx.doi.org/10.1093/ije/dyu225
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status was included as a covariate to get an impression of the relative importance of
socio-economic factors in explaining parental age effects.

Bayesian evidence synthesis was used to summarize the results over the cohorts.
The current era is one of increased awareness of the need for replication research
before making scientific claims (see, for example Open Science Collaboration, 2015).
Therefore, in this study, the datasets of the four cohort studies were used to evaluate
the same set of hypotheses with respect to the relation between parental age and
offspring mental health problems. This approach is called Bayesian evidence synthesis
(Kuiper et al., 2012).

8.1 Method

8.1.1 Participants

The participants in this study came from the Gen-R, NTR, RADAR-Y, and TRAILS
population cohort studies. Table 8.2 gives the total sample size and information on
parental age for each cohort. The total number of children in each cohort was 4,769
for Gen-R, 25,396 for NTR, 497 for RADAR-Y, and 2,230 for TRAILS.

Table 8.2: Cohort Descriptive Statistics of Total Sample Size and Parental Age in
Current Study

Cohort N Maternal age at birth child Paternal age at birth child
Range M (SD) Range M (SD)

Gen-R 4,769 16.56 - 46.85 31.68 (4.79) 17.61 - 68.67 34.24 (5.58)
NTR 25,396 17.36 - 47.09 31.35 (3.95) 18.75 - 63.61 33.76 (4.71)
RADAR-Y 497 17.80 - 48.61 31.38 (4.43) 20.34 - 52.52 33.70 (5.10)
TRAILS 2,230 16.34 - 44.88 29.32 (4.58) 18.28 - 52.09 31.99 (4.71)

Gen-R mothers were recruited in the city of Rotterdam during pregnancy. Their
partners, and later their children, were also invited to participate. For Gen-R, partici-
pants from the child age-10 study wave (born between 2002 and 2006) were included
if they had complete information on maternal age and a child behavioral problems
sum score by at least one informant. When multiple children from one family were
present, one sibling was randomly removed (N = 397) to create a sample of unrelated
individuals. Mean child age for mother report was: 9.72 (SD = 0.32), father report:
9.77 (SD = 0.32), and child self-report: 9.83 (SD = 0.36). 71.2% of the Gen-R sample
is Dutch or European. Other ethnic groups are Suriname (6.4%), Turkish (5.3%), and
Moroccan (4.2%). Mother’s educational level is low (i.e., no education or primary
education) for 9%, intermediate (i.e., secondary school, lower vocational training) for
42%, and high (i.e., higher vocational training, university) for 49%. Based on mother
reports, 84.5% of the children had non-clinical scores for internalizing problems, 7.1%
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scored in the borderline category, and 8.4% scored in the clinical category. With
respect to externalizing problems, 92.0% scored in the non-clinical category, 3.6% in
the borderline category, and 4.5% in the clinical category.

The NTR study recruits new-born twins from all regions in the Netherlands. Here
we included the data on 10-year-olds who were born between 1986 and 2008. Children
were not included if they had a severe handicap which interfered with daily functioning.
Mean child age for mother report was: 9.95 (SD = 0.51), father report: 9.94 (SD = 0.50)
and teacher report: 9.80 (SD = 0.58). The children in NTR were mostly born in the
Netherlands (99.5%). The remaining 0.5% consisted mainly of other West European
nationalities (0.4%). Parents in the NTR were mostly born in the Netherlands (95.7%
of fathers and 96.7% of mothers). The NTR genotype database indicates that 2.2% of
participants born in the Netherlands have non-Dutch ancestry. 3.1% of mothers had a
low skill occupation (primary education), 11.4% had an occupation that required lower
secondary education, 40.3% had an upper secondary educational level, 30.6% had a
higher vocational occupation level, and 14.6% worked at the highest (i.e. scientific)
level. According to mother reports for internalizing problems, 86.1% of children had a
non-clinical score, 5.9% had a borderline score, and 8.0% scored in the clinical range.
For externalizing problems, 85.7% scored in the non-clinical range, 6.5% scored in the
borderline range, and 7.8% in the clinical range.

The RADAR-Y sample was recruited in the province of Utrecht and four large
cities in the mid–west of the Netherlands. Because the RADAR-Y study had a focus
on delinquency development, children with borderline externalizing behavior problems
at age 12 were oversampled. All participants from the first wave of data collection,
born between 1990 and 1995, were selected. The mean age of the children at this wave
was 13.03 years (SD = 0.46). The sample consisted mainly of native Dutch (87.9%)
children. Remaining participants belonged to the following ethnic groups: Surinam
(2.4%), Indonesian/ Moluccan (2.4%), Antillean (1.8%), Turkish (0.4%), and other
(4.8%). Mother’s educational level is low (i.e., no education or primary education) for
3.2%, intermediate (i.e., secondary school, lower vocational training) for 56.7%, and
high (i.e., higher vocational training, university) for 40.1%. According to the children’s
reports for externalizing problems, 81.6% of the participants had a non-clinical score,
7.2% had a borderline score, and 11.2% scored in the clinical range. Using the cutoff
scores for the depression scale as described by Reynolds (2000), 4.0% of the children
scored in the subclinical or clinical range of depressive symptoms. Using the cutoff
scores for the anxiety scale of Birmaher et al. (1997), 5.3% of the children scored in
the subclinical or clinical range for anxiety symptoms.

The TRAILS sample was recruited in the Northern regions of the Netherlands.
All participants from the first wave of data collection (born between 1990 and 1991)
were selected. The mean age of the children at the first wave was 11.09 (SD = 0.56).
The large majority of participants were Dutch (86.5%), with other participants being
Surinam (2.1%), Indonesian (1.7%), Antillean (1.7%), Moroccan (0.7%), Turkish
(0.5%), and other (6.9%). Mother’s educational level is low (i.e., no education or
primary education) for 6.9%, intermediate (i.e., secondary school, lower vocational
training) for 66.3%, and high (i.e., higher vocational training, university) for 26.8%.
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Based on mother-reported sum-scores for the internalizing and externalizing scales,
TRAILS participants were categorized in a non-clinical, borderline, or clinical category.
For internalizing problems, 67.3% of the participants had a non-clinical score, 13.9%
had a borderline score, and 18.8% had a clinical score. For externalizing problems,
74.5% had a non-clinical score, 10.2% a borderline score, and 15.4% had a score in the
clinical range.

To summarize, the cohorts represented the entire Dutch geographic region across
all strata from society. They had a similar distribution of SES. The percentage of
participants with parents born in the Netherlands was relatively high in NTR (>95%),
around 87% in Radar-Y and TRAILS, and relatively low in Gen-R (<72%). The
percentage of non-clinical behavioral problem scores was lowest in TRAILS.

All studies were approved by central or institutional ethical review boards. The
participants were treated in compliance with the Declaration of Helsinki, and data
collection was carried out with their adequate understanding and parental consent.
All measures in RADAR-Y were self-reports. In the other cohorts, children were rated
by any combination of: their parents, themselves, or their teachers. Table 8.3 shows
the total number of children in each cohort, and the number of participants with an
externalizing and internalizing behavior problem score, as a function of informant
(father, mother, teacher and self).

8.1.2 Measures

Predictors

Maternal and Paternal Age at Birth. The age of the biological parents at birth of the
child was measured in years up to two decimals for each cohort.

Outcomes

Externalizing and Internalizing Problems. In most cohorts, internalizing and external-
izing problems were assessed by the parent-rated Child Behavior Checklist (CBCL;
Achenbach and Edelbrock, 1991; Achenbach and Rescorla, 2001), the Youth Self-
Report (YSR; Achenbach and Edelbrock, 1991), and the Teacher Report Form (TRF;
Achenbach and Rescorla, 2001). These questionnaires contain a list of around 120
behavioral and emotional problems, which can be rated as 0 = not true, 1 = somewhat
or sometimes true, or 2 = very or often true in the past 6 months. The broadband
scale Internalizing problems includes the syndromes anxious/depressed behavior, with-
drawn/depressed behavior, and somatic complaints; the broadband scale Externalizing
problems involves aggressive and rule-breaking behavior. In TRAILS, the Teacher
Checklist of Psychopathology (TCP) was developed to be completed by teachers. The
TCP contains descriptions of problem behaviors corresponding to the syndromes of
the TRF. Teachers rated the TCP on a 5-point scale (De Winter et al., 2005). In
Gen-R, the YSR was replaced by the Brief Problem Monitor (BPM), containing six
items for internalizing and seven items for externalizing behavior problems from the
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YSR. All items were scored on a 3-point scale. In RADAR-Y, internalizing behavior
problems were assessed by a combined score of the Reynolds Adolescent Depression
Scale-2nd edition (RADS-2; Reynolds, 2000) and the Screen for Child Anxiety Re-
lated Emotional Disorders (SCARED; Birmaher et al., 1997) questionnaires. The
RADS-2 contained 23 items (the subscale anhedonia was deleted) and the SCARED
contained 38 items, which were rated on a 4-point scale (1 = almost never, 2 = hardly
ever, 3 = sometimes, 4 = most of the time) and 3-point scale (1 = almost never,
2 = sometimes, 3 = often), respectively. Table 8.3 gives an overview of the rating
instruments, the informants for each of the cohorts and the number of children in each
cohort for each informant/instrument combination. A sum score was calculated per
informant/instrument for the relevant items for externalizing and internalizing prob-
lems respectively. Table 8.4 shows the mean scores for externalizing and internalizing
problems per cohort. The scores for girls and boys are given in Tables S1 and S2 of
the supplementary materials, respectively.

Table 8.3: Total Sample Size and Sample Sizes per Rater per Cohort

Gen-R NTR RADAR-Y TRAILS
(Total Sample Size) (N= 4,769) (N=25,396) (N=497) (N=2,230)
Variable Rater

Externalizing
behavior
problems

Child BPMa 4,010 - - YSRb 491 YSRb 2,188
Mother CBCLc 4,549 CBCLc 21,921 - - CBCLc 1,965
Father CBCLc 3,259 CBCLc 14,715 - - - -
Teacher - - TRFd 12,573 - - TCPe 1,925

Internalizing
behavior
problems

Child BPMa 4,018 - - RADS-2f +
SCAREDg

266 YSRb 2,171

Mother CBCLc 4,550 CBCLc 21,731 - - CBCLc 1,955
Father CBCLc 3,259 CBCLc 14,626 - - - -
Teacher - - TRFd 12,389 - - TCPe 1,924

aBrief Problem Monitor.
bYouth Self Report.
cChild Behavior Checklist
dTeacher Report Form
eTeacher Checklist of Psychopathology
fReynolds Adolescent Depression Scale - 2nd edition. Excluding anhedonia scale. Standardized
before averaged with SCARED
g Screen for Child Anxiety Related Disorders. Standardized before averaged with RADS-2.

Covariates

Socio-Economic Status (SES) and child gender. In Gen-R, SES was defined as a
continuous variable (principal component) based on parental education and household
income. In NTR, SES was a 5-level ordinal variable based on occupational level. In
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Table 8.4: Mean and SD for Externalizing and Internalizing Problems

Rater Cohort Externalizing Internalizing N -Ext/N -Int
Child Gen-R 1.94 (1.92) 2.15 (2.09) 4,010/4,018

RADAR-Y 10.61 (7.15) -0.04 (0.86) 491/266
TRAILS 8.68 (6.25) 11.28 (7.41) 2,188/2,171

Mother Gen-R 3.92 (4.91) 4.86 (5.05) 4,549/4,550
NTR 5.61 (6.12) 4.68 (5.07) 11,086/10,986
TRAILS 8.40 (7.03) 7.85 (6.20) 1,965/1,955

Father Gen-R 3.99 (4.91) 4.58 (4.72) 3,259/3,259
NTR 4.66 (5.41) 3.56 (4.24) 7,420/7,374

Teacher NTR 3.28 (5.88) 4.41 (4.96) 6,536/6,446
TRAILS 0.44 (0.77) 0.99 (1.12) 1,925/1,924

Note. For instruments, see Table 8.3.

TRAILS, SES was a 3-level ordinal variable based on parental education, parental
occupational status and household income. In RADAR-Y SES was a dichotomous
variable based on parents’ occupational level. Child gender was coded as male = 0
and female = 1.

Missing Data and Data Imputation

Missing Data.

For externalizing problem behavior, 15.9% of the child self-reports were missing for
Gen-R, while for RADAR-Y and TRAILS these percentages were 1.2% and 1.9%,
respectively. For mother reported data, 4.6% were missing for Gen-R, 13.7% for NTR
and 11.9% for TRAILS. For father reported data, 31.7% were missing for Gen-R and
42.1% for NTR. For teacher reported data, 50.5% were missing for NTR and 13.7% for
TRAILS. For internalizing problem behavior, the percentages were similar, except for
child-reported data in RADAR-Y, where 46.4% was missing. For the predictor variables,
age mother and age father, 0.3% and 1.3%, were missing for NTR, 0.0% and 14.4% for
Gen-R, 0.4% and 9.7% for RADAR-Y, and 5.1% and 25.0% for TRAILS, respectively.
For SES, the percentage of missing values was always below 3.0%, except for Gen-R
where 22.3% was missing. For child gender, all cohorts had complete information.

Please note that the higher percentage for missing teacher- and father-reported
data of NTR is due to the fact that NTR did not collect teacher-reported data at
the initiation of the study and that NTR had not collected father-reported data in
multiple birth years due to financial constraints. The higher percentage of missing
self-reported data of internalizing problem behavior for RADAR-Y is caused by the
fact that not all subscales on which the internalizing problem behavior score was based
were collected from all participants.
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Data Imputation.

Missing data was handled by means of multiple imputation (Schafer and Graham,
2002; Van Buuren, 2012). When multiple imputation is used, the missing values are
repeatedly (in this study 100 times) imputed, that is, replaced by values that are
plausible given the child’s scores that are not missing, resulting in 100, so-called,
completed data sets. Subsequently, each completed data set is analyzed (for example,
using a multiple regression) and the 100 analyses are summarized such that the fact
that “artificial data” are created by imputation is properly accounted for. Multiple
imputation proceeds along three steps:

1. Determine which variables are to be used for imputation. These variables have to
be chosen such that conditional on these variables the missing data are believed to
be missing at random (MAR; Van Buuren, 2012), that is, whether or not a score is
missing does not depend on the missing value (Schafer and Graham, 2002). Unless
missingness is planned, the variables causing the missingness are unknown to the
researcher. What is often done in practice is that variables are chosen that are
expected to be good predictors of the variables containing missing values. One can
argue with respect to which and how many variables to use, but there is no way to
test whether MAR is achieved, and MAR is an assumption. The imputation model
included the outcome variables externalizing and internalizing behavioral problems
per informant, total behavioral problems, SES, child gender, age of the child, age
of the father and age of the mother. In some cohorts, other variables were present
that could also contribute to the imputation. Specifically, parent psychopathology
(in Gen-R) and total number of siblings (in NTR) contributed to the imputation
model. Variables functioned only as predictors when a correlation of at least .10
with the imputed variable was present. Since the NTR dataset contained twins,
the imputation process differed from that of the other cohorts. The imputation for
NTR was done for each family instead of each participant, so that the same value
for SES, age father and age mother was obtained for both twins. The imputation
of missing data was done for informants available in each cohort. So, for example,
when a cohort had no teacher-reported data, teacher data were not imputed.

2. Generate imputed data matrices. The R package MICE (Multiple Imputation
by Chained Equations; Van Buuren, 2012) was used to create 100 imputed data
matrices. MICE uses an iterative procedure in which sequentially each variable
is imputed conditional on the real and imputed values of the other variables.
Continuous variables were imputed by predictive mean matching. Categorical
variables were imputed using logistic regression (see Van Buuren, 2012). Success
of the imputation was evaluated by checking the events logged by the software,
and by checking convergence plots for a lack of trends and proper mixing of the
imputation chains.

3. Analyze each imputed data set as desired and pool the results. In the current study
each of the 100 imputed data sets was analyzed using multiple regression or cluster
linear regression. The results, for each regression coefficient, were 100 estimates
and 100 standard errors of the estimate. As may be clear, each of the standard
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errors was too small because they are partly based on artificial imputed data. This
was accounted for by properly pooling the results using Rubin’s rules (Van Buuren,
2012, see). The variance over the 100 estimates reflects the uncertainty in the
estimate due to missing values (in each of the 100 completed data sets different
values are imputed). In Rubin’s rules the variance of the 100 estimates is used to
increase the standard errors such that they properly account for the fact that part
of the data is imputed. Gen-R, TRAILS and RADAR-Y used the ‘pool’ function
of MICE in R for summarizing the effects of the 100 separate imputed datasets,
whereas NTR used the pooling option of Mplus version 8.0 (Muthén and Muthén,
2017) instead of R, to appropriately take into account the family clustering of the
twins in the same analysis. Both pooling methods are based on the principles as
explained here. The pooled estimates and standard errors were the main outcomes
of the analyses after imputation.

8.2 Analytical Strategy: Bayesian Evidence Synthesis

The process of Bayesian evidence synthesis consists of four steps: (1) creating ex-
ploratory and confirmatory data sets; (2) generating competing hypotheses using
exploratory analysis; (3) quantifying the support for each of the competing hypotheses
using Bayesian hypothesis evaluation; and (4) Bayesian evidence synthesis, that is,
summarizing the support resulting from each study into the overall support for the
competing hypotheses in the data from the four cohort studies.

8.2.1 Exploratoration and Confirmation

As was elaborated in the introduction, diverse results regarding the relation between
parental age and child problem behavior have been found in the literature, with
increased parental age both positively and negatively related to child problem behavior.
In the same vein, there may be a quadratic effect and if there is, increased child problem
behavior may be present at high and low parental age. Since research is indecisive,
especially for the non-clinical studies reviewed in this paper, the data resulting from
each of the cohorts were split randomly into two parts containing the same number
of children: an exploratory part, which was used to generate a set of competing
hypotheses; and a confirmatory part, which was used to quantify the support in the
data for each of the hypotheses considered. Since the NTR dataset consisted of twins,
the cross-validation datasets were split based on family ID for this cohort, to ensure
independent datasets. Multiple imputation was applied separately to the exploratory
and confirmatory part of the data. Having an exploratory and confirmatory dataset
avoids the so-called “double dipping”, that is, using the same data to generate and
evaluate hypotheses. Here a hypothesis survived if it: 1) emerged from the exploratory
analyses and 2) was supported by the confirmatory analyses. The process of generating
hypotheses is explained below.
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8.2.2 Generating Hypotheses using Exploratory Analyses

The exploratory half of the data resulting from each of the four cohorts was used
to generate hypotheses with respect to the relation between child problem behavior
and parental age. First, for each cohort separately, linear regression analyses were
conducted to relate internalizing and externalizing problem behavior as evaluated
by child, mother, father, and teacher (See Table 8.3 for the informants that were
present per cohort) on paternal and maternal age and age squared (both with and
without child gender and social economic status as covariates). For Gen-R, RADAR-Y
and TRAILS, the analyses were conducted in R (R Core Team, 2017). For the NTR
twin-data, cluster linear regression analyses were conducted in Mplus version 8.0
(Muthén and Muthén, 2017).

All analyses were repeated with SES and child gender as covariates. This rendered,
for each combination (e.g., predicting externalizing problems as rated by the mother
from mother age and age squared) an estimate of both the linear and quadratic effect
for each of the cohorts that included the informant of interest. These estimates and the
corresponding p-values provided information with respect to whether the linear and non-
linear effects were expected to be negative, zero, or positive. To interpret the strength
of relations, the variables in the exploratory analyses were all standardized. The
results of the regression analyses were translated into so-called informative hypotheses
(Hoijtink, 2012), that is, hypotheses that represent expectations with respect to the
state of affairs in the populations from which the data of the four cohorts were sampled.
An example of such an informative hypothesis is: H1: β < 0. That is, the regression
coefficient is negative. Informative hypotheses go beyond the traditional null hypothesis
(here H0: β = 0) by stating explicitly which relations between variables are expected.
Often the null is added to the set of hypotheses under consideration to protect against
unjustified claims that the effect specified by an informative hypothesis exists. Another
hypothesis that can be added besides the informative hypotheses is the alternative
hypothesis Ha: β. That is, there are no restrictions on the regression coefficient. The
alternative hypothesis is used to protect against choosing the best of a set of inadequate
informative hypotheses. For example, H0: β = 0, and H1: β < 0 constitute the set of
hypotheses supported by the exploratory parts of the data, but both are inadequate
in the confirmatory data. Instead, another unspecified hypothesis β > 0 describes
the confirmatory data best. In this case the Bayesian approach (specified below) will
prefer the alternative hypothesis, Ha: β, over the informative hypotheses H0 and H1.
By using informative hypotheses, the exact same hypotheses could be evaluated in
all cohorts, even when cohorts used different measurement instruments for the same
concepts. Not requiring the exact same measurement instruments is an important
benefit of Bayesian evidence synthesis over classical meta-analyses.

8.2.3 Confirmatory Bayesian Hypothesis Evaluation

Once a set of competing informative hypotheses had been formulated (including the
traditional null and alternative hypotheses), the empirical support for each pair of
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hypotheses was quantified using the Bayes factor (BF; Kass and Raftery, 1995).
The BF is the ratio of the marginal likelihood of two competing hypotheses. Loosely
speaking, the marginal likelihood of a hypothesis is the probability of that hypothesis
given the data. Consequently, a BF comparing H1 with Ha of, for example, 5 indicates
that the support in the data for H1 is five times larger than for Ha. The BF as the
ratio of two marginal likelihoods implies that the fit (how well does a hypothesis
describe the data set at hand) and the specificity (how specific is a hypothesis) of the
hypotheses involved are accounted for (Gu et al., 2018). To give an example, if β = −2,
H1: β < 0, and Ha: β, both have an excellent fit, but H1: β < 0 is more specific than
Ha: β (anything goes), and as a result, the BF will prefer H1 over Ha. Note that the
size of the BF is related to sample size. If the precision of the evidence in the data
for a hypothesis increases as a result of a larger sample, the BF for that hypothesis
will increase as well. The BF implemented in the R package Bain (Gu et al., 2018)
was used to evaluate informative hypotheses in the context of (cluster) multiple linear
regression models.

Assuming that a priori each hypothesis is equally likely to be true, the BFs were
transformed in so-called posterior model probabilities (PMPs), that is, the support
in the data for the hypothesis at hand given the set of hypotheses under evaluation.
PMPs have values between 0 and 1 and sum to 1 for the hypotheses in the set under
consideration. For example, if PMP H0 = .05, PMP H1 = .85, and PMP Ha = .10,
then it is clear that H1 receives the most support from the data, because it has by far
the largest PMP. Thus, the result of the confirmatory Bayesian hypotheses evaluation
were PMPs for each hypothesis and for each informant by each of the cohorts that had
ratings by this informant. The next step was to apply Bayesian evidence synthesis.

8.2.4 Bayesian Evidence Synthesis

Bayesian evidence synthesis was used to summarize the support for the hypotheses
of interest over the four cohort studies. Bayesian evidence synthesis (Kuiper et al.,
2012) can be illustrated using the set of hypotheses: H0: β = 0, H1: β < 0, and Ha: β
as introduced above. In the context of this paper, these hypotheses are incompletely
specified. The complete specification would be H0: β = 0 for NTR, H1: β < 0for
NTR and Ha: β for NTR, and analogously for the other three cohort studies. This
specification highlights that the support for the hypotheses depends on the cohort
study at hand. Bayesian evidence synthesis can then be used to determine support for
a set of hypotheses:

H0:H0 for NTR & H0 for TRAILS & H0 for Gen-R & H0 for Radar-Y
H1:H1 for NTR & H1 for TRAILS & H1 for Gen-R & H1 for Radar-Y
Ha:Ha for NTR & Ha for TRAILS & Ha for Gen-R & Ha for Radar-Y

that is, the regression coefficient is zero in the populations corresponding to each of the
four cohort studies, the regression coefficient is smaller than zero in the populations
corresponding to each of the four cohort studies, and there is no prediction with
respect to the regression coefficient in the populations corresponding to each of the
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four cohort studies. If for a specific set of hypotheses only two or three cohorts contain
the necessary variables, the hypotheses can be adjusted accordingly. Like for each
individual study, the support for these composite hypotheses was quantified using
posterior model probabilities (PMPs).

If a hypothesis emerges from the exploratory analyses of the data corresponding
to the cohort studies and is supported by the confirmatory analyses of the data
corresponding to the cohort studies, then there is evidence that this hypothesis
provides an adequate description of the relation between child problem behavior and
parental age, that is, in general, independent of the specific cohort studies used to
evaluate this hypothesis. With the methodological approach elaborated in this section
and applied in the remainder of this paper, the increased awareness of the need for
replication studies before making scientific claims is explicitly addressed.

8.3 Results

8.3.1 Exploratory Analyses

The results of the exploratory analyses (see Supplementary Materials) generally showed
a negative relation between mean-centered parental age and externalizing problems
accompanied by a positive quadratic coefficient, implying that the negative relation
with age at the mean declined across age (see Table S3 and Figure S1). This model
explained about 1.9% of the total variance in externalizing problems with maternal
age and 1.2% with paternal age. For internalizing problems, the relation with parental
age was less apparent: about 0.5% of the total variance was explained by maternal age,
and about 0.2% was explained by paternal age. In analyses including the covariates
SES and gender, the relation with age diminished, but remained significant (Tables S4,
and S5 of the Supplementary Materials). Higher SES was related to fewer externalizing
problems, and boys showed more externalizing problems than girls. In general, no
relation between parental age and internalizing problems was observed (see Tables S6,
S7, and S8, and Figure S1 of the Supplemental Materials).

Our interpretation of the exploratory results led to the following set of competing
informative hypotheses with respect to the relation between parental age (mean-
centered), as indicated by a linear (i.e., β1) and quadratic (i.e., β2) coefficient, and
child problem behavior:

H1:β1 = 0, β2 = 0. Age does not have a linear or quadratic relation.
H2:β1 < 0, β2 = 0. Age has a negative linear relation, there is no quadratic relation.
H3:β1 < 0, β2 > 0. Age has a negative linear relation, and a positive quadratic relation.
H4:β1, β2. The coefficients can have any value.

Based on the exploratory results, we expected most evidence for H2 or H3 in
analyses with parental age predicting externalizing problems, and most evidence for
H1 in analyses with parental age predicting internalizing problems.
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Since the exploratory results did not show a positive linear or a negative quadratic
relation between age and behavioral problems, the hypotheses do not include these
features. However, we remained open to other options by including the alternative
hypothesis Ha that imposes no constraints on the parameters, and accordingly claims
that anything can be true. Ha receives the most support if none of the specified
informative hypotheses provides an adequate description of the confirmatory part
of the data from each of the four cohorts. In this manner, we avoided that the best
hypothesis out of the set of H1, H2, and H3, is an implausible hypothesis.

8.3.2 Confirmatory Analyses

Tables S9 to S14 contain the confirmatory unstandardized regression coefficients.
These are the results per cohort that generated the relative support for the competing
informative hypotheses as will be presented in the next paragraph. We will discuss
the underlying results briefly. Similarly to the exploratory data, the results showed
negative relations across cohorts between parental age and externalizing problems.
However, in the confirmatory data, the quadratic coefficients from the cohorts were less
often significantly different from zero than in the exploratory data. The model with a
linear and quadratic coefficient for parental age explained on average about 1.1% of
the total variance in externalizing problems with maternal age and 0.9% with paternal
age as a predictor. With respect to internalizing behavior problems, the model with
maternal age explained on average about 0.4% of the total variance, and paternal age
explained on average about 0.3%. Figure 8.1 visualizes the relation between age and
behavioral problems using the first imputation of the confirmatory part of Gen-R and
NTR respectively. The figure presents a plot of data for internalizing and externalizing
problems. As a result of centering, the linear effect that we investigated is the effect
at the mean age around 29-32 years for mothers and 32-34 years for fathers (see
Table 8.2 for mean parental age per cohort). The results presented in the figures were
representative for all other analyses and cohorts.

8.3.3 Parental Age and Externalizing Behavior Problems

The posterior model probabilities (PMPs) concerning the relation between parental
age and externalizing problems are presented in Table 8.5. The table only shows PMP
scores for those cohorts that included the associated informants (see Table 8.3 for
an overview of informants per cohort). As shown in Table 8.5, for parent-reported
externalizing behavior problems, Gen-R yielded most evidence for H1 (i.e., no relation
with parental age); NTR mostly supported H2, (i.e., the relation with parental age is
linear and negative) as did TRAILS, but for mother-reported externalizing behavior
problems predicted by paternal age, NTR yielded most support for H3 (i.e., the relation
with parental age follows a negative linear trend including a positive quadratic factor).
The combined results for mother-reported externalizing behavior problems predicted
by father age showed substantial support (PMP = .53 and .45 respectively) for H2
and H3. For father reported externalizing behavior problems predicted by father age
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(a) Gen-R child-reported externalizing prob-
lems in relation to paternal age

(b) NTR father-reported internalizing prob-
lems in relation to paternal age

(c) Gen-R mother-reported externalizing prob-
lems in relation to maternal age

(d) NTR teacher-reported internalizing prob-
lems in relation to maternal age

Fig. 8.1: Confirmatory results for parental age in relation to problem behavior as represented
in Gen-R and NTR.

and for parent-reported externalizing behavior problems predicted by mother age, the
combined results provided most support for H2: the relation with parental age is linear
and negative, in other words, higher parental age is associated with less externalizing
behavioral problems. For teacher-reported externalizing behavior problems predicted
by paternal age, TRAILS and NTR combined yielded most evidence for H1 (i.e., no
relation with parental age) closely followed by H2. When maternal age was included,
most support was found for H2: the relation with parental age is linear and negative.
For child-reported externalizing behavior problems, the results were mixed across
cohorts (Gen-R preferred H2 or H3, RADAR-Y H3 or H1, and TRAILS H1). After
combining the results from the three cohorts, however, most support was obtained for
H1, that is, no relation with parental age.

Table 8.6 shows the results after inclusion of the covariates as predictors of exter-
nalizing problems. After adjusting for SES and gender, all cohorts yielded substantial
evidence for H1 with respect to child- and teacher-reported externalizing problem
behavior. This meant a shift especially for the child-reported problem behavior by
Gen-R, and the teacher-reported problem behaviors by both NTR and TRAILS. For
parent-reported problem behavior, some cohorts provided most support for H1 (Gen-R
for all parent-reports, and TRAILS for paternal age predicting mother-reported prob-
lem behavior), others for H2 (TRAILS and NTR), and NTR for H3 in mother-reported
problem scores related to paternal age. By including covariates in the model, Gen-R
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and TRAILS mainly handed in support on H2 while in NTR the support for H2
increased at the expense of support for H3. When combining evidence for the parent
reports, most support was still found for H2, that is, there is a linear inverse relation
between parental age and externalizing problem behavior.

8.3.4 Parental Age and Internalizing Behavior Problems

With regard to internalizing problems (the results are presented in Table 8.7), the
cohorts generally found most evidence forH1 for multiple informants, except for mother-
reported internalizing problems reported by maternal age in NTR. All combinations
of studies rendered most support for H1, which means that the hypothesis that there
is no relation between parental age and internalizing problems was best supported by
the set of studies.

After including the covariates SES and gender (Table 8.8), all results still suggested
the most support for H1 for the impact of parental age on internalizing problem
behavior, irrespective of the cohort and informant. Consequently, combining the
results from the various cohorts provided overwhelming support for H1, that is, there
is no evidence for a relation between parental age and child internalizing problem
behavior.

Table 8.5: Posterior Model Probabilities for Parental Age Predicting Externalizing
Problems

Rater Cohort Age Father Age Mother
H1 H2 H3 Ha H1 H2 H3 Ha

Child Gen-R .23 .56 .16 .05 .22 .18 .49 .13
RADAR-Y .28 .02 .49 .22 .43 .07 .38 .12
TRAILS .86 .13 .00 .01 .83 .15 .02 .01
All .98 .02 .00 .00 .93 .02 .04 .00

Mother Gen-R .90 .07 .02 .01 .82 .04 .10 .05
NTR .00 .02 .74 .24 .00 .89 .09 .03
TRAILS .18 .74 .06 .02 .00 .88 .09 .03
All .00 .53 .45 .00 .00 .97 .03 .00

Father Gen-R .65 .22 .10 .03 .60 .19 .17 .04
NTR .00 .49 .38 .13 .00 .93 .05 .00
All .00 .73 .25 .02 .00 .95 .05 .00

Teacher NTR .55 .41 .03 .01 .29 .60 .09 .02
TRAILS .48 .31 .16 .05 .00 .73 .21 .06
All .67 .32 .01 .00 .00 .96 .04 .00

Note. Numbers in italic font represent the highest posterior model probability per cohort.
Numbers in bold font represent the highest meta-analytic results.
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Table 8.6: Posterior Model Probabilities for Parental Age Predicting Externalizing
Problems after Correction for Impact Covariates

Rater Cohort Age Father Age Mother
H1 H2 H3 Ha H1 H2 H3 Ha

Child Gen-R .62 .33 .04 .01 .83 .10 .05 .02
RADAR-Y .36 .02 .42 .19 .53 .08 .29 .10
TRAILS .88 .11 .00 .01 .89 .09 .02 .01
All 1.00 .00 .00 .00 1.00 .00 .00 .00

Mother Gen-R .96 .03 .00 .00 .97 .02 .00 .01
NTR .00 .31 .52 .17 .00 .95 .04 .01
TRAILS .67 .31 .01 .01 .30 .63 .05 .02
All .03 .99 .00 .00 .00 1.00 .00 .00

Father Gen-R .88 .10 .02 .00 .92 .06 .01 .00
NTR .02 .84 .02 .00 .00 .96 .03 .01
All .72 .28 .00 .00 .00 .99 .01 .00

Teacher NTR .79 .20 .01 .00 .68 .28 .03 .01
TRAILS .87 .11 .02 .00 .60 .32 .07 .02
All .97 .03 .00 .00 .81 .18 .00 .00

Note. Numbers in italic font represent the highest posterior model probability per cohort.
Numbers in bold font represent the highest meta-analytic results.

Table 8.7: Posterior Model Probabilities for Parental Age Predicting Internalizing
Problems

Rater Cohort Age Father Age Mother
H1 H2 H3 Ha H1 H2 H3 Ha

Child Gen-R .91 .08 .01 .00 .86 .09 .04 .01
RADAR-Y .84 .09 .05 .03 .81 .16 .02 .01
TRAILS .96 .04 .00 .00 .93 .06 .01 .00
All 1.00 .00 .00 .00 1.00 .00 .00 .00

Mother Gen-R .58 .25 .14 .04 .35 .25 .33 .08
NTR .69 .26 .04 .01 .26 .72 .01 .01
TRAILS .94 .05 .00 .00 .80 .17 .02 .01
All .99 .01 .00 .00 .71 .29 .00 .00

Father Gen-R .43 .42 .11 .03 .48 .36 .13 .03
NTR .96 .04 .00 .00 .95 .05 .00 .00
All .96 .04 .00 .00 .97 .03 .00 .00

Teacher NTR .99 .01 .00 .00 .99 .01 .00 .00
TRAILS .85 .06 .07 .02 .24 .15 .49 .12
All 1.00 .00 .00 .00 .99 .01 .00 .00

Note. Numbers in italic font represent the highest posterior model probability per cohort.
Numbers in bold font represent the highest meta-analytic results.
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Table 8.8: Posterior Model Probabilities for Parental Age Predicting Internalizing
Problems after Correction for Impact Covariates

Rater Cohort Age Father Age Mother
H1 H2 H3 Ha H1 H2 H3 Ha

Child Gen-R .77 .21 .02 .01 .82 .09 .07 .02
RADAR-Y .86 .07 .04 .03 .86 .11 .02 .01
TRAILS .97 .03 .00 .00 .95 .04 .00 .00
All 1.00 .00 .00 .00 1.00 .00 .00 .00

Mother Gen-R .88 .11 .01 .00 .93 .05 .01 .00
NTR .88 .11 .01 .00 .70 .29 .00 .00
TRAILS .96 .04 .00 .00 .91 .08 .01 .00
All 1.00 .00 .00 .00 1.00 .00 .00 .00

Father Gen-R .88 .09 .02 .01 .90 .08 .01 .00
NTR .96 .03 .00 .00 .96 .04 .00 .00
All 1.00 .01 .00 .00 1.00 .01 .00 .00

Teacher NTR .99 .01 .00 .00 .99 .01 .00 .00
TRAILS .94 .04 .02 .01 .83 .06 .08 .03
All 1.00 .00 .00 .00 1.00 .00 .00 .00

Note. Numbers in italic font represent the highest posterior model probability per cohort.
Numbers in bold font represent the highest meta-analytic results.

8.4 Discussion

8.4.1 Parental Age and Externalizing Problems

We found evidence for a negative linear relation between parental age and externalizing
problems as reported by parents. That is, older parents have children with less
externalizing behavior problems. There was also evidence for a negative linear relation
between maternal age and externalizing problems as reported by teachers. For teachers,
this finding was partly explained by SES. However, the relation between parental age
and parent-reported externalizing problems persisted after adjusting for SES, so the
favorable effect of parental age is not solely due to SES.

8.4.2 Parental Age and Internalizing Problems

Parental age seemed unrelated to child internalizing problem behavior, especially when
accounting for SES. Tentatively, older parenthood might be associated with both
high and low vulnerability to develop internalizing problems. On the one hand, older
parents may have a lower probability of internalizing problems because they are less
likely to have a background characterized by deprivation and social instability (Robson
and Pevalin, 2007), known to be related to internalizing problems such as anxiety and
depression. On the other hand, internalizing problems can increase the probability
of older parenthood, by hampering engagement in and consolidation of romantic
relationships (Manning et al., 2010; Sandberg-Thoma and Dush, 2014). Possibly, both
processes play a role, and their joint influence results in a lack of net result.
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8.4.3 Sociodemographic Factors as a Potential Explanation

The relatively consistent beneficial effect of advanced parenthood for childhood exter-
nalizing problems may seem unexpected, given mixed findings from earlier research
on more common mental health problems (de Kluiver et al., 2017; McGrath et al.,
2014). The beneficial effect of advanced parental age could have more than one expla-
nation. Older and younger parents have different parenting styles. For example, there
is evidence that older mothers use less frequent sanctions towards their children, are
more sensitive to the child’s needs and provide more structure (Trillingsgaard and
Sommer, 2018). Older parents may also tend to appraise a specific problem level as
less disturbing than younger parents, and older parents might be more patient and are
capable of setting limits, thus feeling more equipped to handle externalizing behaviors.
The positive impact of higher quality parenting by older parents is expected to be
more relevant to externalizing problem behavior than to autism and schizophrenia,
where a disadvantageous impact of increased parental age has been established.

Previous studies provided evidence indicating that offspring of older parents are,
in several respects, more affluent than those with younger parents (e.g., Carslake
et al., 2017; McGrath et al., 2014; Myrskylä and Fenelon, 2012; Orlebeke et al., 1998;
Tearne et al., 2015, 2016). The finding that the negative relation of parental age and
externalizing problems became weaker when SES was taken into account, indicates
that the relatively high SES of older parents, or SES-related selection effects (Robson
and Pevalin, 2007) at least partly explained why their children have a decreased
probability of externalizing problems. Myrskylä et al. (2017) argued that there are
indeed important socio-demographic pathways associated with delayed parenthood
in more recent birth cohorts. Older mothers tend to have better health behaviors
during pregnancy, for example with respect to smoking during pregnancy, which is an
established risk factor for offspring externalizing problems (Dolan et al., 2016).

Furthermore, parents who have externalizing behavior problems themselves may
be higher in risk taking and may have children at a younger age. Hence, externalizing
behavior problems may be transmitted especially by younger parents and less by older
parents. This idea is in line with the unclarity about a relation between ADHD and
advanced paternal age (de Kluiver et al., 2017; McGrath et al., 2014).

From a biological point of view, advanced parenthood seems mostly disadvantageous,
but socio-demographic factors might compensate (or even more than compensate)
for the biological disadvantages related to reproductive ageing when it comes to
mental health problems. Older mothers from more recent birth cohorts are more
socioeconomically advantaged, and happier after childbearing. The observation that
older parents have offspring with fewer externalizing problems, tended to disappear
when SES was taken into account. This shows that demographic factors can indeed
compensate for the biological disadvantages.

8.4.4 Earlier Versus Later Birth Cohorts

In the 1950s and 1960s the number children born to mothers over the age of 40 was
larger than in 2016. For offspring born during the 1960s, Saha et al. (2009) found
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a negative association between maternal age and externalizing behavior problems,
but in contrast to our results, they observed a positive association between maternal
age and internalizing problems, and a positive association between paternal age and
externalizing behavior problems. The study differed in several important aspects from
the current one. All offspring were born during the 1960s, whereas in our study, all
offspring were born after 1980. The age at which fathers and mothers have children has
increased in the last 20 years. In the Saha et al. study average maternal and paternal
ages were 24.8 and 28.4, respectively, while in our samples average maternal- and
paternal ages were around 31 and 33 years. Older mothers from earlier birth cohorts
tended to have low levels of education and their offspring had many older siblings
(Myrskylä et al., 2017). In later birth cohorts, older mothers had higher education
than younger mothers and their offspring had fewer older siblings. Thus, the family
resources are spread less thinly across siblings than in earlier times. This may be the
reason that our results differ from some of the findings of Saha et al. (2009). As argued
by Myrskylä et al. (2017) as well, being a parent during the 1960s differs from being a
parent in the 1980s, and children born during the 1980s and later might benefit from
positive changes in the macro-environment.

8.4.5 Informant Effect

We used a multi-informant design (i.e., mother, father, teacher, child) to investigate
parental age effects on behavioral problems. Most questionnaires belonged to the same
system (ASEBA), but they do not necessarily capture the exact same construct, as
different informants observe the children in different contexts. It is well-established that
correlations between different types of informants are modest at the most (Achenbach
et al., 1987; Renk and Phares, 2004), and it is generally recommended to involve
multiple informants to assess child and adolescent psychopathology (Jensen et al., 1999).
Consistent with the notion that different informants provide partly non-overlapping
information, the results in this study depended on the choice of informant, since,
as opposed to parent-reported problems, child-reported externalizing problems were
not predicted by parental age. Conceivably, this different outcome for child-reported
problems is due to a limited ability of 10-year-old children to report reliably and
validly on their externalizing behaviors. It is less likely that the associations with
parent-reports are caused by reporter bias because, as teacher-reports also provided
support for an association with maternal age. Thus, the choice of informant is not
an arbitrary one, and may influence the associations that are found. Obviously, the
parent and teacher sample sizes were also substantially larger than the sample size for
child-reports. Additionally, the largest study with child reports (i.e., TRAILS) used
a shortened version of the YSR, which could cause lower reliability and validity of
child-reports.

8.4.6 Strengths of the Current Paper

This paper adopted an analysis strategy that used the data of multiple cohort studies to
evaluate the same set of hypotheses. First, the data of each cohort study were divided
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into two parts: an exploratory part and a confirmatory part. Second, the exploratory
part was used to generate a set of competing informative hypotheses. Third, the
confirmatory part was used to compute the support in each cohort for the hypotheses
entertained and to combine studies by means of Bayesian updating to compute overall
results (Kuiper et al., 2012). This analysis strategy had a number of advantages. In
the exploratory analyses data snooping or even p-hacking is allowed, because this
part of the data is only used to generate a set of competing informative hypotheses
and not to evaluate these hypotheses. In contrast, the confirmatory part of each
data set is only used to evaluate this set of informative hypotheses to the traditional
null and alternative hypotheses, which should, especially in ages of replication crisis,
publication bias and questionable research practices, increase the credibility of our
results. The interested reader is referred to the Supplementary Materials where we
highlight why exploratory analyses may lead to incorrect interpretations, even with
large samples, and that cross-validation can prevent this from happening. In addition,
with traditional null hypothesis significance testing, we would not have been able
to quantify the support for the null hypothesis (p-values cannot be used to “accept”
the null-hypothesis), which appeared an important hypothesis in our study. Bayes
factors and posterior model probabilities are not used to reject or not reject the
null-hypotheses, they are used to quantify the support in each of the cohorts for
the hypotheses entertained. Furthermore, combining studies using Bayesian updating
enabled us to quantify the relative evidence with respect to multiple hypotheses using
the data from multiple cohorts. Again, in ages of replication crisis, it is valuable to
base conclusions on data from multiple cohorts that can all be used to address the
same research question.

8.4.7 Limitations

Although the study has a number of methodological strengths, there are also limitations.
First, the study focused on children’s externalizing and internalizing behavior problems
and did not examine other outcomes that may be positively associated with parental
age, such as physical health problems and neurodevelopmental conditions. Second,
children’s behavior problems were only assessed during early adolescence. Thus, the
study could not investigate the possibility that the direction or magnitude of the
associations may vary at different points in development. For example, previous research
suggesting a negative association between parental age and individuals’ well-being has
focused on late adolescents and young adults (e.g., Tearne et al., 2016; Weiser et al.,
2008). Third, a tiny percentage of the parents were under the age of 20 at the time of
the child’s birth. Although this reflects societal changes in the Netherlands, it would
be important to note that some results may not replicate in other populations that
have higher percentages of teenage pregnancies. This may be especially relevant when
interpreting the lack of an association between parental age and children’s internalizing
behavior problems in this study.
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8.4.8 Conclusion

The analytic strategy applied to large cohorts showed us a beneficial association between
advanced parental age and externalizing problem behavior, while for internalizing
problem behavior there was no beneficial association with parental age. We found no
evidence for a harmful effect of advanced parenthood.
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9
Discussion

Research makes the greatest progress when it makes use of the results and insights
of others. Hence, the motto of Google Scholar: “Stand on the shoulders of giants”.
Informative prior distributions and informative hypotheses provide ways to formalize
and include the findings of others in a statistical analysis.

The aim of this dissertation was to demonstrate how prior knowledge can be
formalized and evaluated. In Part I, the emphasis was on the formalization of prior
knowledge. Chapter 2 clarified that prior knowledge can promote convergence, coverage,
correct estimates, and statistical power. Especially for smaller subgroups in multi-group
models, prior knowledge can make an important contribution. The empirical basis of
the simulation study in Chapter 2 makes the results directly applicable to Chapter
3. Researchers that want to explore the impact of specific prior variances in their
research context, can make use of the simulation set up used in this chapter.

Chapter 3 shows that it is not easy to acquire the prior information in practice.
Meta-analyses that may provide the most useful information may not be available, and
reviews provide qualitative instead of quantitative information, which makes it harder
to transform the information into prior distributions. Subgroups in the model for which
it is difficult to obtain participants will often also be the groups for which it is hard to
acquire prior information, while Chapter 2 demonstrated that prior information for
these groups is most important. Under these challenging circumstances, Chapter 3
pointed out that individual studies, experts and general knowledge can proof to be
useful resources for prior information.

Constructing prior distributions from the obtained prior information is not straight-
forward: decisions need to be made about the type of distribution, its mean, mode and
variance. Visualizations of the distributions can help researchers in the decision making
process. It is important that the researcher is clear about the prior specifications and
the reasoning behind them. Next to the empirical application, Chapter 3 provides
guidelines for researchers that want to include informative priors in their analyses,
which filled an important gap in the current literature. Zweers (2018, Chapter 5)
followed the guidelines in Zondervan-Zwijnenburg et al. (2017a) and could conduct suc-
cessful analyses with the acquired prior information. More applications would provide

This chapter is written by Mariëlle Zondervan-Zwijnenburg
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additional insight in the process of acquiring prior information and help researchers
further in using prior information.

In Chapter 4, we developed and evaluated an expert elicitation procedure for
correlations. The elicitation procedure appears promising, and a beneficial property
of the bins and chips method is that it results in complete distributions that can be
used as priors in Bayesian analyses. Note, however, that expert elicitation procedures
always have to be customized to the expert (group) at hand. The procedure should be
introduced properly and should match the statistical and content knowledge of the
specific experts. Veen et al. (2017) continued the work of Zondervan-Zwijnenburg et al.
(2017b) by building an online trial roulette method with immediate feedback: it shows
how the expert’s decisions affect the shape of the prior distribution. This elicitation
method may further improve the validity and reliability of experts’ elicited knowledge,
and can easily be incorporated in an elicitation procedure. The preferred elicitation
mode (e.g., online, face-to-face, in a meeting with computers) again depends on the
expert group at hand. As was implied by the retest in Chapter 4, some experts may
focus better on the elicitation during a meeting than while at work or at home.

All in all, Part I of this dissertation showed that prior information can be very useful,
but it comes with a price. It can take substantial effort to obtain prior information.
Furthermore, researchers need to make many decisions in the process, for example,
about the form of the distribution, or about the customization of the expert elicitation
procedure. Bayesian statistics are sometimes criticized because informative priors would
be subjective. The fact that prior distributions contain information independent of the
data, however, does not make them unscientifically subjective. The fact that decisions
are involved in the process of constructing the priors may endanger objectivity, but
not more than objectivity is endangered by researcher degrees of freedom in standard
data collection and analysis: In every study, researchers need to make decisions on
the operationalizations of constructs, measurement instruments, the statistical model
etcetera (see also Chapter 7). Decision making is part of scientific research, but to
protect integrity, decisions should be independent of outcomes and need to be clarified.
This transparency is encouraged throughout the current dissertation.

Part II is about testing replication. In Chapter 5 and Chapter 6, the prior predictive
p-value is introduced to test whether a new study fails to replicate relevant findings
of an original study. The prior predictive p-value takes into account that parameter
estimates and samples based on these estimates vary naturally. In contrast to what
some replication assessment methods would conclude, not finding the same results
is not necessarily evidence for non-replication. Only if the new results are extreme
in comparison to datasets predicted given the original results, the prior predictive
p-value concludes that studies do not replicate. Furthermore, the prior predictive
p-value is applicable to a wide range of statistical models. Testing the replication of
claims of an original study beyond an effect size (e.g., Cohen’s d or Pearson’s r) was
not possible with any of the previously proposed replication testing methods. The
extension of the test beyond the ANOVA model in Chapter 6 makes an important
contribution to the replication literature in this respect. An R Shiny user-interface,
and two R-packages were developed to make the prior predictive p-value accessible to
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social and behavioral scientists. Future research may further investigate how a single
prior predictive p-value can be obtained in case of missing data in the new study.
Furthermore, statistical power is important for the prior predictive p-value. For the
ANOVA model, we developed a method to compute statistical power and calculate
the required sample size for a sufficiently powered replication study. Future research
may delve deeper into defining the alternative population for which replication should
be rejected for models beyond the ANOVA. If the alternative population is defined, a
method to calculate power and required sample sizes can be developed accordingly.

Although the prior predictive p-value is useful in the replication context, Chapter
7 shows that there are also other replication questions that can be answered with
different methods. For example, researchers may want to investigate the similarity of
the original and new study, or may want to focus on the population effect. For the first
question Bayes factors can be useful, while the population effect may be best tackled
with a meta-analytic approach that takes publication bias into account. Chapter 7
discussed four replication research questions and associated methods with special
attention to small sample research. For many of the methods related to alternative
replication research questions, an extension to models beyond the correlation and
t-test is warranted.

Finally, in Part III, we used exploratory results to compose informative hypotheses
that were tested in four cohort studies. By using separate exploratory and confirmatory
datasets, we reduced the risk of overfitting, that is, modeling irregularities of a sample
and interpreting them as population effects. The confirmatory analyses resulted in
a posterior model probability for each of the competing informative hypotheses.
Afterwards, the relative probabilities were combined over the four cohorts to evaluate
which hypotheses were best supported by all cohorts. The four cohorts used varying
measures for internalizing and externalizing behavior problems. Hence, with a classic
meta-analysis it would not have been possible to combine the different studies. By
using informative hypothesis, we evaluated which hypothesis was robustly supported
by all cohorts, irrespective of measurement choices and sample characteristics. Chapter
8 demonstrated that evaluating and updating informative hypotheses is a good and
useful method for research synthesis and is ready to be applied. Future directions may
concern prior weights that can be allocated to the involved studies or hypotheses, and
the application to, for example, longitudinal structural equation models.
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Samenvatting

Voorkennis is kennis die men heeft buiten de huidige data om. Deze kennis kan
bijvoorbeeld gebaseerd zijn op eerder onderzoek of op ervaring. In dit proefschrift wordt
duidelijk hoe deze kennis verzameld kan worden, hoe deze omgezet kan worden in een
prior verdeling en hoe deze kennis geëvalueerd kan worden. Voordat de verschillende
hoofdstukken worden samengevat, worden twee manieren om voorkennis te gebruiken
in analyses kort beschreven.

Informatieve Prior Verdeling

Informatieve prior verdelingen zijn onderdeel van Bayesiaanse statistiek. Bayesiaanse
statistiek drukt uitkomsten uit in kansen. Een parameter zoals het gemiddelde wordt
gebaseerd op zowel data als op onze verwachting omtrent het gemiddelde. De verwach-
ting wordt uitgedrukt in een kansverdeling. Als het gaat om het gemiddelde van IQ
(i.e., µIQ), dan kan onze verwachting zijn dat het gemiddelde 100 is, maar aangezien
we niet 100% zeker zijn dat het gemiddelde in deze dataset 100 is, nemen we ook
onzekerheid mee. We drukken dat bijvoorbeeld uit in een normaalverdeling met een
gemiddelde van 100, en een standaarddeviatie van 10. Dat is:

µIQ ∼ N(100, 10). (9.1)

Deze kansverdeling wordt ook weergeven in Figuur 1.1. Wanneer de data gecombineerd
wordt met de prior verwachting, is de uitkomst ook een kansverdeling: de posterior
verdeling. De posterior kansverdeling geeft aan wat de kans is van elke waarde om het
gemiddelde van IQ te zijn.

In Bayesiaanse statistiek wordt voorkennis dus onderdeel van de analyse, net zo
goed als de data. Wanneer er weinig tot geen voorkennis is, wordt dit uitgedrukt
in een zeer vlakke prior verdeling die een wijde reeks waarden een soortgelijke kans
toebedeeld. Deze dissertatie toont aan in Hoofdstuk 3 en 4 hoe voorkennis verkregen
kan worden en hoe deze omgezet kan worden in prior verdelingen en wat de impact is
ervan is. Daarnaast wordt de voorkennis ook op verschillende manieren geëvalueerd:
met een simulatie studie in Hoofdstuk 2, met een robuustheidsanalyse in Hoofdstuk 3,
met visualisaties in Hoofdstuk 4, en met de ‘prior predictieve p-waarde’ Box (1980) in
Hoofdstuk 5, 6 en 7.
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Informatieve Hypothese

Ook informatieve hypotheses zijn een manier om voorkennis te includeren. De in-
formatieve hypothese bevat beperkingen voor de waarden die een parameter aan
kan nemen. Zo zijn er beperkingen in de reeks waarden die een parameter aan kan
nemen (bijv. µIQ > 80), beperkingen in de volgorde van grootheid tussen parameters
(bijv. µIQ-regulier basisonderwijs > µIQ-speciaal basisonderwijs), en gelijkheidsbeperkingen die
stellen dat de parameter gelijk moet zijn aan één specifiek getal (bijv. µIQ = 100) of
aan een andere parameter (bijv. µIQ-Utrecht = µIQ-Leiden).

Om informatieve hypotheses te testen kan (1) een frequentistische p-waarde worden
berekend (zie Silvapulle and Sen, 2005), (2) een informatie criterium worden berekend
voor de vergelijking van verschillende informatieve hypotheses (zie Kuiper and Hoijtink,
2013), of (3) een Bayes factor worden berekend die verschillende hypotheses vergelijkt
(zie Gu et al., 2018).

De Bayes factor methode wordt toegepast in Hoofdstuk 8. Daarnaast vormen infor-
matieve hypotheses een onderdeel van de ‘prior predictive check’ in de Hoofdstukken
5, 6 en 7.

Het Verkrijgen en Formaliseren van Voorkennis

In Hoofdstuk 3 wordt een systematische literatuurstudie uitgevoerd om voorkennis
te verzamelen met betrekking tot een complex longitudinaal analyse-model. Helaas
zijn er geen bruikbare meta-analyses die data aanleveren waarop prior informatie
gebaseerd kan worden. Meerdere reviews impliceren dat het hoofdeffect klein zal zijn,
maar mogelijk wel aanwezig. De review resultaten geven een richting aan voor de
prior verdelingen, maar meer informatie is nodig. Vervolgens wordt er in de literatuur
gezocht naar studies die gemiddelden presenteren voor het gebruikte meetinstrument.
Twee experts, een gedragspsycholoog en een professor ontwikkelingspsychopatholo-
gie, beoordelen vervolgens in hoeverre de gevonden gemiddelden in de studies van
toepassing zijn voor de onderzoeksgroepen. De bruikbare informatie blijkt beperkt,
maar kan opnieuw wel richting geven voor de prior verdelingen. In combinatie met
algemene kennis over ontwikkeling en de meetinstrumenten kunnen vrij algemene
prior verdelingen opgesteld worden. De winst die volgens Hoofdstuk 2 behaald kan
worden met zeer informatieve priors heeft een prijs: het zoeken naar voorkennis is niet
altijd gemakkelijk en levert ook niet altijd het gewenste resultaat op. De inhoudelijk
onderzoeker kan het beste inschatten wanneer het zoeken naar voorkennis de moeite
waard zal zijn. Een voorbeeld is (Zweers, 2018, Chapter 5). Zij maakten gebruik van
de richtlijnen gepresenteerd in Zondervan-Zwijnenburg et al. (2017a) en vond daarmee
de mogelijkheid om succesvolle analyses te verrichten.

In hoofdstuk 4 wordt een procedure ontwikkeld om inhoudelijke experts te bevragen
op een correlatie. In dit geval werden ontwikkelingspsychologen bevraagd op hun
kennis van de relatie tussen schoolvoortgang en IQ bij kinderen met en zonder autisme
spectrum stoornis (ASS) die het middelbaar speciaal onderwijs voor kinderen met



S.

Samenvatting 181

ernstige gedragsproblemen bezochten. De methode beslaat het toewijzen van kansen
met behulp van stickers aan mogelijke uitkomsten voor de correlatie.

De indruksvaliditeit van het ontwikkelde instrument was goed. De convergente
validiteit die de samenhang met andere correlatie-schattingen uitdrukt was .42 en .59
voor respectievelijk de groep met en zonder ASS. De onzekerheid rond deze schattingen
was dermate hoog dat er geen sterke conclusies aan verbonden konden worden. Het
absolute verschil in de schatting ten opzichte van de andere correlatiemaat was klein.
De puntschattingen uit een alternatieve correlatie-vraag lagen allen binnen de geschatte
verdelingen van de experts. Naast validiteit werd ook betrouwbaarheid onderzocht. De
gedragspsychologen kregen de test ruim vier maanden later nog eens opgestuurd om
een indicatie van test-hertestbetrouwbaarheid te verkrijgen. Eén psycholoog vond niet
de gelegenheid om de vragenlijst in te vullen. De resultaten van de anderen wezen op
een onvoldoende test-hertestbetrouwbaarheid. Een mogelijke conclusie is dat het voor
sommige expertgroepen zeer belangrijk is om hen rustig de gelegenheid te geven om de
vragen te beantwoorden, bij voorkeur in de aanwezigheid van de onderzoeker zodat ook
vragen beantwoord kunnen worden. Hoofdstuk 4 beschrijft verder hoe de verkregen
resultaten van de experts omgezet kunnen worden in bruikbare prior verdelingen. De
expertkennis wordt in deze stap geformaliseerd. Vervolgens wordt de kennis geüpdated
met data en worden de uiteindelijke resultaten geëvalueerd.

Het Evalueren van Voorkennis

Bayesiaanse priors

In hoofdstuk 2 wordt de invloed van het includeren van voorkennis in analyses verhel-
derd door middel van een simulatiestudie. Het uitgangspunt is een latent groeimodel
voor twee groepen: een referentiegroep met 50 tot 10.000 participanten en een speciale
groep met 5 tot 50 participanten. Er is dus één zeer kleine groep en een tweede groep
die meer individujën kan omvatten. De focus ligt op het verschil in lineaire groei
tussen de twee groepen vastgesteld op de eerste meting. Frequentistische analyses
met een Maximum likelihood (ML) schatter en Bayesiaanse analyses met weinig
voorkennis laten zien dat de schattingen ook met zeer kleine groepen dicht bij de po-
pulatiewaarde liggen. Tegelijkertijd resulteren de analyses met de ML schatter vaak in
waarschuwingen over onrealistische schattingen en daarmee onbruikbare resultaten. In
de Bayesiaanse analyses komen deze schattingen niet voor doordat de prior distributies
geen onrealistische schattingen zoals negatieve varianties toestaan. Een problematisch
resultaat voor de ML schatter en de Bayesiaanse analyses met weinig voorkennis is de
statistische power om een nul-effect te verwerpen: deze is zeer laag. Door het gebrek
aan informatie in de data, kunnen er weinig conclusies aan de resultaten verbonden
worden. Pas wanneer er sterke prior verwachtingen geformuleerd kunnen worden, zijn
de resultaten specifiek genoeg om er conclusies aan te verbinden. Met name voorkennis
ten opzichte van de kleine groep is hierin relevant. Dat het juist voor deze groep lastig
is om voorkennis te vinden, wordt ook duidelijk in Hoofdstuk 3.
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Replicatie

Bij een replicatie poging spelen twee studies een rol: de originele studie en de nieuwe
studie. De originele studie kan gezien worden als voorkennis voor een nieuwe studie. We
zouden kunnen stellen dat de nieuwe studie in lijn moet zijn met de voorkennis (dat is de
originele studie) om de studie gerepliceerd te noemen. Om deze evaluatie uit te voeren
is er de zogenaamde ‘prior predictive check’ van Box (1980). In de test worden datasets
aangemaakt die te verwachten zijn gegeven de aanwezige voorkennis. Vervolgens wordt
een toetsingsgrootheid gekozen die voor elke voorspelde dataset uitgerekend wordt. De
toetsingsgrootheid wordt dan ook voor de nieuwe studie berekend. Wanneer de nieuwe
studie een extreme score behaalt ten opzichte van de voorspelde studies, verwerpen
we de replicatie. Een extreme score is dan bijvoorbeeld een score die in de uiterste vijf
procent van de voorspelde studies ligt. Wanneer een nieuwe studie niet in de extremen
scoort, verwerpen we replicatie niet.

Als toetsingsgrootheid kiezen wij voor F̄ waarmee een informatieve hypothese, H0,
geëvalueerd wordt. De informatieve hypothese is bijvoorbeeld µ1 > µ2 > µ3 in geval
van een ANOVA studie. De inhoud van de informatieve hypothese wordt gebaseerd op
de claims van de originele studie. Door willekeurige variatie kan ook een studie die
te verwachten gegeven het origineel deenige afwijking vertonen ten opzichte van de
replicatie hypothese H0. De vraag is dus niet of de nieuwe studie H0 exact repliceert,
maar of de nieuwe studie niet meer van die hypothese afwijkt dan datasets die je zou
verwachten gegeven de originele studie. Hoofdstuk 5 geeft een uitleg van de methode
voor het ANOVA model. Daarbij wordt ook een online interactieve R Shiny omgeving
gepresenteerd en het R-package ANOVAreplication (Zondervan-Zwijnenburg, 2018)
waarmee de gebruiker de toets eenvoudig zelf uit kan voeren. Hoofdstuk 6 legt uit hoe
de methode toegepast kan worden op structurele vergelijkingsmodellen met behulp van
het Replication R-package (Zondervan-Zwijnenburg, 2019). In Hoofdstuk 7 worden
meerdere replicatie-vragen en methoden naast elkaar gezet in de context van kleine
steekproeven. Bayes factor methoden hebben het voordeel met kleine steekproeven
dat ze geen probleem kennen met statistische power. De prior predictieve p-waarde
heeft als voordeel dat complexe hypotheses en modellen in een enkele toets opgenomen
kunnen worden. Uiteindelijk hangt de keuze van onderzoeksmethode altijd samen met
de onderzoeksvraag. Voor alle methoden geldt: hoe groter de steekproeven, hoe groter
de betekenis van de uitkomst.

Cross-validatie

Tenslotte bevat deze dissertatie een multi-cohort studie met data van het Nederlandse
Tweelingen Register (NTR), TRacking Adolescents’ Individual Lives Survey (TRAILS),
Generation R (Gen-R) en Research on Adolescent Development and Relationships-
Young cohort (RADAR-Y). De onderzoeksvraag in deze studie is: Wat is de relatie
tussen de leeftijd waarop ouders kinderen krijgen en de psychosociale klachten van
het kind op 10-jarige leeftijd? Voor de beantwoording van deze onderzoeksvraag
wordt gebruik gemaakt van een vorm van cross-validatie met een exploratieve en
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confirmatieve dataset voor elk cohort. Op basis van exploratieve resultaten worden
concurrerende informatieve hypotheses opgesteld. Vervolgens wordt met Bayes factoren
in de confirmatieve datasets geëvalueerd in hoeverre de data ondersteuning biedt voor
elk van de hypotheses. Daarnaast wordt de relatieve steun voor elk van de hypotheses
ten opzichte van elkaar geëvalueerd en uitgedrukt in zogenoemde ‘posterior model
probabilities’. Uiteindelijk wordt de relatieve ondersteuning bij elkaar genomen om te
evalueren hoe de relatieve steun is door alle cohorten samen. Dat is: welke hypothese
krijgt de meeste steun onafhankelijk van specifieke cohort kenmerken en meetmethoden?

De conclusie van de studie is dat de leeftijd waarop ouders kinderen krijgen geen
invloed heeft op internaliserende problematiek op 10-jarige leeftijd. Met betrekking
tot externaliserende problemen, wordt er wel een negatief verband gevonden tussen de
leeftijd van moeders en externaliserende problemen zoals gerapporteerd door beide
ouders: moeders die ouder zijn op het moment dat hun kind geboren wordt, rapporteren
minder vaak externaliserend probleemgedrag. Wanneer sociaal-economische status en
sekse van het kind worden opgenomen in het model, verdwijnt het verband tussen
de leeftijd van moeder en de rapportage van probleemgedrag door vaders. Voor
probleemgedrag van het kind volgens moeders wordt er na correctie voor leeftijd en
sekse evenveel ondersteuning gevonden voor de hypothese van geen effect, als voor de
hypothese van een lineair negatief effect. De moeder-rapportages van probleemgedrag
hangen ook negatief samen met de leeftijd van vader, maar dit verband verdwijnt
wanneer sociaal-economische status en sekse worden opgenomen in het model.

Door gebruik te maken van een exploratieve en confirmatieve dataset, wordt het
gevaar kleiner dat we afwijkingen in de steekproef interpreteren als populatie-effecten.
Ook het samenvoegen van ondersteuning van hypotheses vanuit verschillende datasets
vermindert de kans dat we onechte effecten interpreteren. Het samenvoegen van
verschillende datasets is vaak lastig doordat de meetinstrumenten verschillen. Door de
resultaten samen te vatten in informatieve hypotheses die op alle meetinstrumenten
van toepassing waren, kon deze uitdaging eenvoudig aangepakt worden.

Discussie

Onderzoek maakt de meeste vooruitgang wanneer zij gebruik maakt van de resultaten
en inzichten van anderen. Vandaar ook het Google Scholar motto: “Staan op de
schouders van reuzen”. Informatieve prior verdelingen en informatieve hypotheses zijn
manieren om voorkennis te formaliseren en evalueren.

Het doel van deze dissertatie was om te laten zien hoe voorkennis geformaliseerd en
geëvalueerd kan worden. In Deel I lag de nadruk op het formaliseren van voorkennis.
Hoofdstuk 2 liet zien hoe voorkennis bevorderend kan werken met het oog op een
aantal statistische eigenschappen. Vooral voor de kleinere groep in een studie kan
voorkennis voordelig werken. Hoofdstuk 3 echter, liet zien dat het in de praktijk niet
gemakkelijk is om voorkennis te verzamelen en om te zetten in prior verdelingen. Het
hoofdstuk eindigt daarom met een aantal richtlijnen voor onderzoekers om mee te werk
te gaan. Nieuwe toegepaste studies waarin voorkennis wordt verzameld en omgezet in
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prior verdelingen zullen meer licht werpen op dit proces en onderzoekers verder helpen
in het gebruiken van voorkennis.

Hoofdstuk 4, waarin een procedure werd ontwikkeld om voorkennis bij experts
te verzamelen, toonde aan dat maatwerk hierin van groot belang is. De procedure
moet aangepast worden op de inhoudelijke en statistische kennis van de expertgroep
in kwestie. Veen et al. (2017) heeft voortgeborduurd op het werk van Zondervan-
Zwijnenburg et al. (2017b) en ontwikkelde een digitale variant van de sticker-methode
waarmee de experts hun voorkennis weergaven. Deze methode kan de validiteit en
betrouwbaarheid van de methode verder verhogen doordat de experts onmiddellijk
terugzien hoe hun gestickerde verdeling wordt omgezet in een statistische verdeling.
De methode van Veen et al. (2017) kan opgenomen worden in de procedure zoals
verder voorgesteld in Zondervan-Zwijnenburg et al. (2017b). Op welke manier de
informatie verkregen wordt (bijv. online, face-to-face, of face-to-face met behulp van
computers) hangt wederom volledig af van de experts waarbij de informatie verkregen
wordt. Sommige experts zullen betere informatie geven wanneer zij in een groep zijn
en vragen kunnen stellen, terwijl andere experts mogelijk beter functioneren buiten
een vergadering om.

In Deel II van de dissertatie stond het testen van replicatie met de ‘prior predictieve
p-waarde’ centraal. Deze methode neemt steekproefvariantie mee en is op een breed
scala van statistische modellen toepasbaar. Het testen van beweringen uit een originele
studie die verder gaan dan een effectgrootte was met geen van de bestaande methoden
om replicatie te evalueren mogelijk. De uitbreiding naar statistische modellen naast de
ANOVA in Hoofdstuk 6 was een belangrijke stap in de huidige replicatie literatuur.
Twee R-packages en een online R-Shiny omgeving zijn gemaakt om de methode goed
bruikbaar te maken voor onderzoekers. Vervolgstappen kunnen gemaakt worden om-
trent de verwerking van missende data binnen de replicerende studie en het berekenen
van statistische power voor modellen anders dan de ANOVA.

In Deel III tonen we aan dat cohort-studies goed gecombineerd kunnen worden
door ondersteuning voor hypotheses samen te vatten over studies heen. Deze methode
kan ook op andere modellen en onderzoeksvragen toegepast worden om robuuste
ondersteuning van hypotheses te evalueren.
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